Advertisements
Advertisements
Question
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Solution
`7^0 xx (25)^(-3/2) - 5^(-3)`
= `7^0 xx ( 5 xx 5 )^( -3/2 ) - 5^( -3 )`
= `7^0 xx (5^2)^(-3/2) - 1/5^3`
= `7^0 xx [(5)^[2 xx (-3/2)]] - 1/5^3`
= `7^0 xx 5^(-3) - 1/5^3`
= `1 xx 5^(-3)- 1/5^3`
= `1/5^3 - 1/5^3`
= `[ 1 - 1 ]/[ 5 xx 5 xx 5 ]`
= `0/125`
= 0
APPEARS IN
RELATED QUESTIONS
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
Evaluate the following: `(3^2)^2`
Find the value of 10−3.
Find the value of (23)2.