Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
उत्तर
`(32)^(-2/5) ÷ (125)^(-2/3)`
= `[(32)^(-2/5)/(125)^(-2/3)]`
= `(125)^(2/3)/(32)^(2/5)`
= `( 5 xx 5 xx 5 )^(2/3)/( 2 xx 2 xx 2 xx 2 xx 2 )^(2/5)`
= `(5^3)^(2/3)/(2^5)^(2/5)`
= `5^2/2^2`
= `25/4`
= `(5/2)^2`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify :
`( a + b )^(-1) . ( a^(-1) + b^(-1) )`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
Find the value of 10−3.
Find the value of 46 × 4−4.