Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
उत्तर
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
= `[1 - { 1 - 1/( 1 - n ) }^-1]^-1`
= `[1 - { (1-n-1)/( 1 - n ) }^-1]^-1`
= `[1 - { (-n)/( 1 - n ) }^-1]^-1`
= `[1 - { (1-n)/(- n ) }]^-1`
= `[ (-n- 1 + n )/-n ]^-1`
= `[(-1)/-n]^-1`
= n
APPEARS IN
संबंधित प्रश्न
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Evaluate the following: `(2^3)^2`