Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int 1/(sqrt(x + 2) - sqrt(x + 3)) "d"x`
उत्तर
`int 1/(sqrt(x + 2) - sqrt(x + 3)) "d"x`
Conjugating the Denominator
`int 1/sqrt(x + 2) - 1/sqrt(x + 3) xx ((sqrt(x + 2) + sqrt(x + 3))/(sqrt(x + 2) + sqrt(x + 3))) "d"x`
= `int ((sqrt(x + 2) + sqrt(x + 3)))/((sqrt(x + 2))^2 + (sqrt(x + 3))^2) "d"x`
= `int (sqrt(x + 2) + sqrt(x + 3))/((x + 2) - (x + 3)) "d"x`
= `int (sqrt(x + 2) + sqrt(x + 3))/((-1)) "d"x`
= `- [int (x + 2)^(1/2) "d"x + int (x + 3)^(1/2) "d"x] + "c"`
= `- [((x + 2)^(3/2))/((3/2)) + (x + 3)^(1/2)/((3/2))]+ "c"`
= `2/3 [(x + 2)^(3/2) + (x + 3)^(3/2)] + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`1/(sqrt(x + 1) + sqrt(x - 1))`
Integrate the following with respect to x.
`x^5 "e"^x`
Integrate the following with respect to x.
`"e"^x [(x - 1)/(x + 1)^3]`
Integrate the following with respect to x.
`1/sqrt(9x^2 - 7)`
Integrate the following with respect to x.
`sqrt(4x^2 - 5)`
Choose the correct alternative:
`int "e"^x/("e"^x + 1) "d"x` is
Choose the correct alternative:
`int (2x + 3)/sqrt(x^2 + 3x + 2) "d"x` is
Evaluate the following integral:
`sqrt(9x^2 + 12x + 3) "d"x`
Evaluate the following integral:
`int_0^1 sqrt(x(x - 1)) "d"x`
Evaluate the following integral:
`int_0^3 (x dx)/(sqrt(x + 1)+ sqrt(5x + 1))`