Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int 1/(sqrt(x + 2) - sqrt(x + 3)) "d"x`
उत्तर
`int 1/(sqrt(x + 2) - sqrt(x + 3)) "d"x`
Conjugating the Denominator
`int 1/sqrt(x + 2) - 1/sqrt(x + 3) xx ((sqrt(x + 2) + sqrt(x + 3))/(sqrt(x + 2) + sqrt(x + 3))) "d"x`
= `int ((sqrt(x + 2) + sqrt(x + 3)))/((sqrt(x + 2))^2 + (sqrt(x + 3))^2) "d"x`
= `int (sqrt(x + 2) + sqrt(x + 3))/((x + 2) - (x + 3)) "d"x`
= `int (sqrt(x + 2) + sqrt(x + 3))/((-1)) "d"x`
= `- [int (x + 2)^(1/2) "d"x + int (x + 3)^(1/2) "d"x] + "c"`
= `- [((x + 2)^(3/2))/((3/2)) + (x + 3)^(1/2)/((3/2))]+ "c"`
= `2/3 [(x + 2)^(3/2) + (x + 3)^(3/2)] + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`1/(sqrt(x + 1) + sqrt(x - 1))`
Integrate the following with respect to x.
sin3x
Integrate the following with respect to x.
x8(1 + x9)5
Integrate the following with respect to x.
`1/(x^2 - x - 2)`
Integrate the following with respect to x.
`x^3/sqrt(x^8 - 1)`
Choose the correct alternative:
`int ("d"x)/sqrt(x^2 - 36) + "c"`
Choose the correct alternative:
`int_2^4 ("d"x)/x` is
Choose the correct alternative:
If `int_0^1 f(x) "d"x = 1, int_0^1 x f(x) "d"x = "a"`, and `int_0^1 x^2 f(x) "d"x = "a"^2`, then `int_0^1 ("a" - x)^2 f(x) "d"x` is
Evaluate the following integral:
`int log (x - sqrt(x^2 - 1)) "d"x`
Evaluate the following integral:
`int_0^3 (x dx)/(sqrt(x + 1)+ sqrt(5x + 1))`