Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
उत्तर
`lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
= `lim_(x -> 1) [(x^2 + xsqrt(x) - 1 - 1)/(x - 1)]`
= `lim_(x -> 1) [((x^2 - 1) + (xsqrt(x) - 1))/(x - 1)]`
= `lim_(x -> 1) [(x^2 - 1)/(x - 1) + (x^(3/2) - 1)/(x - 1)] ...[(because xsqrt(x) = x^1* x^(1/2)),( = x^(1 + 1/2) = x^(3/2))]`
= `lim_(x -> 1) [(x^2 - 1^2)/(x - 1)] + lim_(x -> 1) [(x^(3/2) - 1^(3/2))/(x - 1)]`
= `2(1)^1 + 3/2(1)^(1/2) ...[because lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `2 + 3/2`
= `7/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> 0) [(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limits: `lim_(y -> 0) [(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`
Evaluate the following limits: `lim_(x -> 2)[(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`
Evaluate the following limits: `lim_(x -> 0)[(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 + x))]`
Evaluate the following limits: `lim_(x -> 2) [(x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))]`
Evaluate the following limits: `lim_(y -> 2) [(2 - y)/(sqrt(3 - y) - 1)]`
Evaluate the following limits: `lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`
Evaluate the following limit :
`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`
Evaluate the following limit :
`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`
Evaluate the following limit :
`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`
Evaluate the following limit :
`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`
Evaluate the Following limit :
`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`
Evaluate the Following limit :
`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`
Evaluate the Following limit :
`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`
Evaluate the following :
If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following limit.
`lim_(x→0) [[sqrt(6 + x + x^2)- sqrt6]/x]`
Evaluate the following limit:
`lim_(x->0)[(sqrt(6 + x + x^2) - sqrt6)/ (x)]`
Evaluate the following limit:
`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt6)/x]`