Advertisements
Advertisements
प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)` for x ≠ 1
= 20 for x = 1, at x = 1
उत्तर
`lim_(x→1) "f"(x) = lim_(x→1) (x^2 + 18x - 19)/(x - 1)`
= `lim_(x→1) (x^2 + 19x - x - 19)/(x - 1)`
= `lim_(x→1) (x(x + 19) - 1(x + 19))/(x - 1)`
= `lim_(x→1) ((x - 1)(x + 19))/((x - 1))`
= `lim_(x→1) (x + 19)` ....[∵ x → 1, ∴ x ≠ 1, ∴ x - 1 ≠ 0]
= 1 + 19 = 20
Also, f(1) = 20
∴ `lim_(x→1) "f"(x) = "f"(1)`
∴ f(x) is continuous at x = 1
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) = `(x^2 - 10x + 21)/(x - 7)`
Discuss the continuity of the following function at the point indicated against them :
f(x) `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",", "for" x ≠ 0),(= (log 2)^2/2",", "for" x = 0):}}` at x = 0.
If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)
For what values of a and b is the function
f(x) `{:(= "a"x + 2"b" + 18",", "for" x ≤ 0),(= x^2 + 3"a" - "b"",", "for" 0 < x ≤ 2),(= 8x - 2",", "for" x > 2):}}` continuous for every x?
Discuss the continuity of f(x) at x = `pi/4` where,
f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for" x ≠ pi/4),(= 3/sqrt(2)",", "for" x = pi/4):}`
Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.
Suppose f(x) `{:(= "p"x + 3",", "for" "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for" "b" < x ≤ "c"):}`
Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.
f(b) = ______
`lim_(x -> "b"^+) "f"(x)` = _______
∴ pb + 3 = _______ − q
∴ p = `"_____"/"b"` is the required condition
Select the correct answer from the given alternatives:
If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for" x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for" x ≠ 0),(= 2/3",", "for" x = 0):}}` at x = 0
Solve using intermediate value theorem:
Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5
If f(x) is continuous at x = 3, where
f(x) = ax + 1, for x ≤ 3
= bx + 3, for x > 3 then.
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
If f(x) = `{{:(tanx/x + secx",", x ≠ 0),(2",", x = 0):}`, then ______.
If f(x) = `{{:(x, "for" x ≤ 0),(0,
"for" x > 0):}`, then f(x) at x = 0 is ______.
For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.