मराठी

Examine whether the function is continuous at the points indicated against them:f(x) = x2+18x-19x-1 for x ≠ 1 = 20 for x = 1, at x = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)`        for x ≠ 1

      = 20                               for x = 1, at x = 1

बेरीज

उत्तर

`lim_(x→1) "f"(x) = lim_(x→1) (x^2 + 18x - 19)/(x - 1)`

= `lim_(x→1) (x^2 + 19x - x - 19)/(x - 1)`

= `lim_(x→1) (x(x + 19) - 1(x + 19))/(x - 1)`

= `lim_(x→1) ((x - 1)(x + 19))/((x - 1))`

= `lim_(x→1) (x + 19)`  ....[∵ x → 1, ∴ x ≠ 1, ∴ x - 1 ≠ 0]

= 1 + 19 = 20
Also, f(1) = 20

∴ `lim_(x→1) "f"(x) = "f"(1)`

∴ f(x) is continuous at x = 1

shaalaa.com
Continuous and Discontinuous Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Continuity - Exercise 8.1 [पृष्ठ ११२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 8 Continuity
Exercise 8.1 | Q 2. (ii) | पृष्ठ ११२

संबंधित प्रश्‍न

Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1,         for x ≤ 2
      = 3x − 2,                 for x > 2, at x = 2


Examine whether the function is continuous at the points indicated against them :

f(x) `{:(= x/(tan3x) + 2",",   "for"  x < 0),(= 7/3",",  "for"  x ≥ 0):}}  "at"  x = 0`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) = `(x^2 - 10x + 21)/(x - 7)`


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",",  "for"  x ≠ 0),(= (log 2)^2/2",",  "for"  x = 0):}}` at x = 0.


If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)


For what values of a and b is the function

f(x) `{:(= "a"x + 2"b" + 18",",  "for"  x ≤ 0),(= x^2 + 3"a" - "b"",",  "for"  0 < x ≤ 2),(= 8x - 2",",  "for"  x > 2):}}` continuous for every x?


Discuss the continuity of f(x) at x = `pi/4` where, 

f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for"  x ≠ pi/4),(= 3/sqrt(2)",", "for"  x = pi/4):}`


Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.


Suppose f(x) `{:(= "p"x + 3",", "for"  "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for"  "b" < x ≤ "c"):}`

Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.

f(b) = ______

`lim_(x -> "b"^+) "f"(x)` = _______

∴ pb + 3 = _______ − q

∴ p = `"_____"/"b"` is the required condition


Select the correct answer from the given alternatives:

If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for"  x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for"  x ≠ 0),(= 2/3",", "for"  x = 0):}}` at x = 0


Solve using intermediate value theorem:

Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5


If f(x) is continuous at x = 3, where

f(x) = ax + 1, for x ≤ 3

= bx + 3, for x > 3 then.


Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].

Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


If f(x) = `{{:(x, "for"  x ≤ 0),(0,
"for"  x > 0):}`, then f(x) at x = 0 is ______.


For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×