मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid (5+x2)23 - Mathematics

Advertisements
Advertisements

प्रश्न

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(5 + x^2)^(2/3)`

बेरीज

उत्तर

`(5 + x^2)^(2/3) = {5(1 +x^2/5)}^(2/3)`

= `5^(2/3) [(1 + x^2/5)^(2/3)]`

= `5^(2/3) {1 + 2/3(x^2/5) + (2/3(2/3 - 1))/(2.1) (x^2/5)^2 ...}`

= `5^(2/3) {1 + (2x^2)/15 - 2/(9 xx 2) (x^4/25) ...}`

= `5^(2/3) {1 + (2x^2)/15 - x^4/225 ...}`

Hence `|x^2/5| < 1`

⇒ |x2| < 5

shaalaa.com
Infinite Sequences and Series
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Binomial Theorem, Sequences and Series - Exercise 5.4 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 5 Binomial Theorem, Sequences and Series
Exercise 5.4 | Q 1. (iii) | पृष्ठ २३१

संबंधित प्रश्‍न

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`1/(5 + x)`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`2/(3 + 4x)^2`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(x + 2) - 2/3`


Prove that `root(3)(x^3 + 6) - root(3)(x^3 + 3)` is approximately equal to `1/x^2` when x is sufficiently large


Write the first 6 terms of the exponential series
e5x 


Write the first 6 terms of the exponential series
`"e"^(-2x)`


Write the first 4 terms of the logarithmic series
log(1 + 4x) Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 + 3x)/(1 -3x))` Find the intervals on which the expansions are valid.


If y = `x + x^2/2 + x^3/3 + x^4/4  ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`


If p − q is small compared to either p or q, then show `root("n")("p"/"q")` `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`


Find the coefficient of x4 in the expansion `(3 - 4x + x^2)/"e"^(2x)`


Choose the correct alternative:
If a is the arithmetic mean and g is the geometric mean of two numbers, then


Choose the correct alternative:
If (1 + x2)2 (1 + x)n = a0 + a1x + a2x2 + …. + xn + 4 and if a0, a1, a2 are in AP, then n is


Choose the correct alternative:
The sum up to n terms of the series `1/(sqrt(1)  +sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) + ...` is 


Choose the correct alternative:
The sum of an infinite GP is 18. If the first term is 6, the common ratio is


Choose the correct alternative:
The coefficient of x5 in the series e-2x is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×