मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Write the first 4 terms of the logarithmic serieslog(1 + 4x) Find the intervals on which the expansions are valid. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the first 4 terms of the logarithmic series
log(1 + 4x) Find the intervals on which the expansions are valid.

बेरीज

उत्तर

lo(1 + x) = `x - x^2/2 + x^3/3 - x^4/4 ...`

log(1 – x) = `x - x^2/2 - x^3/3 ...`

log(1 + 4x) = `4x - (4x)^2/2 + (4x)^3/3 - (4x)^4/4 ...`

Hence |4x| < 1

⇒ |x| < `1/4`

= `4x - (16x^2)/2 + (64x^3)/3 - (256x^4)/4 ...`

= `4x - 8x^2 + 64/3 x^3 - 64x^4 ...`

shaalaa.com
Infinite Sequences and Series
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Binomial Theorem, Sequences and Series - Exercise 5.4 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 5 Binomial Theorem, Sequences and Series
Exercise 5.4 | Q 6. (i) | पृष्ठ २३१

संबंधित प्रश्‍न

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`2/(3 + 4x)^2`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(x + 2) - 2/3`


Find `root(3)(10001)` approximately (two decimal places


Prove that `root(3)(x^3 + 6) - root(3)(x^3 + 3)` is approximately equal to `1/x^2` when x is sufficiently large


Prove that `sqrt((1 - x)/(1 + x))` is approximately euqal to `1 - x + x^2/2` when x is very small


Write the first 6 terms of the exponential series
e5x 


Write the first 6 terms of the exponential series
`"e"^(-2x)`


Write the first 4 terms of the logarithmic series
log(1 – 2x) Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 + 3x)/(1 -3x))` Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 - 2x)/(1 + 2x))` Find the intervals on which the expansions are valid.


If y = `x + x^2/2 + x^3/3 + x^4/4  ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`


Find the coefficient of x4 in the expansion `(3 - 4x + x^2)/"e"^(2x)`


Find the value of `sum_("n" = 1)^oo 1/(2"n" - 1) (1/(9^("n" - 1)) + 1/(9^(2"n"- 1)))`


Choose the correct alternative:
The coefficient of x8y12 in the expansion of (2x + 3y)20 is


Choose the correct alternative:
The value of the series `1/2 + 7/4 + 13/8 + 19/16 + ...` is


Choose the correct alternative:
The sum of an infinite GP is 18. If the first term is 6, the common ratio is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×