मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Write the first 4 terms of the logarithmic serieslog(1 + 2x) Find the intervals on which the expansions are valid. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the first 4 terms of the logarithmic series
log(1 – 2x) Find the intervals on which the expansions are valid.

बेरीज

उत्तर

log(1 – 2x) = `- 2x - (2x)^2/2 - (2x)^3/3 - (2x)^4/4 ...`

= `- 2x - (4x^2)/2 - (8x^3)/3 - (16x^4)/4 ...`

= `2x - x^2 -  (8x^3)/3 - 4x^4`

Hence |2x| < 1

⇒ |x| < `1/2`

shaalaa.com
Infinite Sequences and Series
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Binomial Theorem, Sequences and Series - Exercise 5.4 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 5 Binomial Theorem, Sequences and Series
Exercise 5.4 | Q 6. (ii) | पृष्ठ २३१

संबंधित प्रश्‍न

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(5 + x^2)^(2/3)`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(x + 2) - 2/3`


Find `root(3)(10001)` approximately (two decimal places


Prove that `root(3)(x^3 + 6) - root(3)(x^3 + 3)` is approximately equal to `1/x^2` when x is sufficiently large


Prove that `sqrt((1 - x)/(1 + x))` is approximately euqal to `1 - x + x^2/2` when x is very small


Write the first 6 terms of the exponential series
e5x 


Write the first 4 terms of the logarithmic series
log(1 + 4x) Find the intervals on which the expansions are valid.


If y = `x + x^2/2 + x^3/3 + x^4/4  ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`


If p − q is small compared to either p or q, then show `root("n")("p"/"q")` `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`


Find the value of `sum_("n" = 1)^oo 1/(2"n" - 1) (1/(9^("n" - 1)) + 1/(9^(2"n"- 1)))`


Choose the correct alternative:
If a is the arithmetic mean and g is the geometric mean of two numbers, then


Choose the correct alternative:
If (1 + x2)2 (1 + x)n = a0 + a1x + a2x2 + …. + xn + 4 and if a0, a1, a2 are in AP, then n is


Choose the correct alternative:
If Sn denotes the sum of n terms of an AP whose common difference is d, the value of Sn − 2Sn−1 + Sn−2 is


Choose the correct alternative:
The sum up to n terms of the series `1/(sqrt(1)  +sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) + ...` is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×