Advertisements
Advertisements
प्रश्न
Write the first 6 terms of the exponential series
`"e"^(-2x)`
उत्तर
ex = `1 + x/(∠1) + x^2/(∠2) + x^3/(∠3)`
`"e"^(-2x) = 1+ (-2x)/(∠1) + (-2x)^2/(∠2) + (-2x)^3/(∠3) - ...`
= `1 - 2x + (4x^2)/2 - (8x^2)/6 + (16x^4)/24 - (32x^5)/120 + (64x^6)/45 - ...`
= `1 - 2x + 2x^2 - (4x^3)/3 + (2x^4)/3 - (4x^5)/15 + (4x^6)/45 - ...`
APPEARS IN
संबंधित प्रश्न
Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid
`1/(5 + x)`
Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid
`2/(3 + 4x)^2`
Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid
`(x + 2) - 2/3`
Find `root(3)(10001)` approximately (two decimal places
Prove that `root(3)(x^3 + 6) - root(3)(x^3 + 3)` is approximately equal to `1/x^2` when x is sufficiently large
Write the first 6 terms of the exponential series
e5x
Write the first 6 terms of the exponential series
`"e"^(1/2x)`
Write the first 4 terms of the logarithmic series
log(1 + 4x) Find the intervals on which the expansions are valid.
If y = `x + x^2/2 + x^3/3 + x^4/4 ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`
If p − q is small compared to either p or q, then show `root("n")("p"/"q")` ∼ `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`
Find the coefficient of x4 in the expansion `(3 - 4x + x^2)/"e"^(2x)`
Find the value of `sum_("n" = 1)^oo 1/(2"n" - 1) (1/(9^("n" - 1)) + 1/(9^(2"n"- 1)))`
Choose the correct alternative:
The coefficient of x6 in (2 + 2x)10 is
Choose the correct alternative:
If a is the arithmetic mean and g is the geometric mean of two numbers, then
Choose the correct alternative:
The sum up to n terms of the series `1/(sqrt(1) +sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) + ...` is
Choose the correct alternative:
The value of the series `1/2 + 7/4 + 13/8 + 19/16 + ...` is
Choose the correct alternative:
The value of `1/(2!) + 1/(4!) + 1/(6!) + ...` is