Advertisements
Advertisements
Question
Write the first 6 terms of the exponential series
`"e"^(-2x)`
Solution
ex = `1 + x/(∠1) + x^2/(∠2) + x^3/(∠3)`
`"e"^(-2x) = 1+ (-2x)/(∠1) + (-2x)^2/(∠2) + (-2x)^3/(∠3) - ...`
= `1 - 2x + (4x^2)/2 - (8x^2)/6 + (16x^4)/24 - (32x^5)/120 + (64x^6)/45 - ...`
= `1 - 2x + 2x^2 - (4x^3)/3 + (2x^4)/3 - (4x^5)/15 + (4x^6)/45 - ...`
APPEARS IN
RELATED QUESTIONS
Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid
`2/(3 + 4x)^2`
Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid
`(5 + x^2)^(2/3)`
Find `root(3)(10001)` approximately (two decimal places
Prove that `sqrt((1 - x)/(1 + x))` is approximately euqal to `1 - x + x^2/2` when x is very small
Write the first 6 terms of the exponential series
e5x
Write the first 6 terms of the exponential series
`"e"^(1/2x)`
Write the first 4 terms of the logarithmic series
log(1 + 4x) Find the intervals on which the expansions are valid.
Write the first 4 terms of the logarithmic series
log(1 – 2x) Find the intervals on which the expansions are valid.
Write the first 4 terms of the logarithmic series
`log((1 - 2x)/(1 + 2x))` Find the intervals on which the expansions are valid.
If y = `x + x^2/2 + x^3/3 + x^4/4 ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`
If p − q is small compared to either p or q, then show `root("n")("p"/"q")` ∼ `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`
Choose the correct alternative:
The coefficient of x6 in (2 + 2x)10 is
Choose the correct alternative:
The coefficient of x8y12 in the expansion of (2x + 3y)20 is
Choose the correct alternative:
If a is the arithmetic mean and g is the geometric mean of two numbers, then
Choose the correct alternative:
If (1 + x2)2 (1 + x)n = a0 + a1x + a2x2 + …. + xn + 4 and if a0, a1, a2 are in AP, then n is
Choose the correct alternative:
The sum of an infinite GP is 18. If the first term is 6, the common ratio is
Choose the correct alternative:
The coefficient of x5 in the series e-2x is
Choose the correct alternative:
The value of `1/(2!) + 1/(4!) + 1/(6!) + ...` is