Advertisements
Advertisements
Question
Write the first 6 terms of the exponential series
`"e"^(1/2x)`
Solution
ex = `1 + x/(∠1) + x^2/(∠2) + x^3/(∠3)`
`"e"^(1/2x) = 1+ 1/2x + (1/2 x)^2/(∠2) + (1/2 x)^3/(∠3) ...`
= `1+ x/2 + x^2/8 + x^3/48 + x^4/384 + x^5/3840 + ...`
APPEARS IN
RELATED QUESTIONS
Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid
`1/(5 + x)`
Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid
`2/(3 + 4x)^2`
Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid
`(5 + x^2)^(2/3)`
Prove that `root(3)(x^3 + 6) - root(3)(x^3 + 3)` is approximately equal to `1/x^2` when x is sufficiently large
Prove that `sqrt((1 - x)/(1 + x))` is approximately euqal to `1 - x + x^2/2` when x is very small
Write the first 6 terms of the exponential series
e5x
Write the first 4 terms of the logarithmic series
`log((1 + 3x)/(1 -3x))` Find the intervals on which the expansions are valid.
Write the first 4 terms of the logarithmic series
`log((1 - 2x)/(1 + 2x))` Find the intervals on which the expansions are valid.
If y = `x + x^2/2 + x^3/3 + x^4/4 ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`
If p − q is small compared to either p or q, then show `root("n")("p"/"q")` ∼ `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`
Find the coefficient of x4 in the expansion `(3 - 4x + x^2)/"e"^(2x)`
Find the value of `sum_("n" = 1)^oo 1/(2"n" - 1) (1/(9^("n" - 1)) + 1/(9^(2"n"- 1)))`
Choose the correct alternative:
The coefficient of x6 in (2 + 2x)10 is
Choose the correct alternative:
The coefficient of x8y12 in the expansion of (2x + 3y)20 is
Choose the correct alternative:
If (1 + x2)2 (1 + x)n = a0 + a1x + a2x2 + …. + xn + 4 and if a0, a1, a2 are in AP, then n is