English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid 15+x - Mathematics

Advertisements
Advertisements

Question

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`1/(5 + x)`

Sum

Solution

`1/(5 + x) - 1/(5(1 + x/5)`

= `1/5(1 + x/5)^(-1)`

= `1/5{1 + x/5 + (x/5)^2 - (x/5)^3 ...}`

Hence `|x/5| < 1`

⇒ ∴ |x| < 5

= `1/5 - x/5^2 + x^2/5^3 - x^3/5^4 ...`

shaalaa.com
Infinite Sequences and Series
  Is there an error in this question or solution?
Chapter 5: Binomial Theorem, Sequences and Series - Exercise 5.4 [Page 231]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 5 Binomial Theorem, Sequences and Series
Exercise 5.4 | Q 1. (i) | Page 231

RELATED QUESTIONS

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`2/(3 + 4x)^2`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(5 + x^2)^(2/3)`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(x + 2) - 2/3`


Find `root(3)(10001)` approximately (two decimal places


Prove that `root(3)(x^3 + 6) - root(3)(x^3 + 3)` is approximately equal to `1/x^2` when x is sufficiently large


Write the first 4 terms of the logarithmic series
`log((1 + 3x)/(1 -3x))` Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 - 2x)/(1 + 2x))` Find the intervals on which the expansions are valid.


If y = `x + x^2/2 + x^3/3 + x^4/4  ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`


If p − q is small compared to either p or q, then show `root("n")("p"/"q")` `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`


Find the coefficient of x4 in the expansion `(3 - 4x + x^2)/"e"^(2x)`


Find the value of `sum_("n" = 1)^oo 1/(2"n" - 1) (1/(9^("n" - 1)) + 1/(9^(2"n"- 1)))`


Choose the correct alternative:
The coefficient of x8y12 in the expansion of (2x + 3y)20 is


Choose the correct alternative:
If a is the arithmetic mean and g is the geometric mean of two numbers, then


Choose the correct alternative:
If Sn denotes the sum of n terms of an AP whose common difference is d, the value of Sn − 2Sn−1 + Sn−2 is


Choose the correct alternative:
The value of `1 - 1/2(2/3) + 1/3(2/3)^2  1/4(2/3)^3 + ...` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×