English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid 2(3+4x)2 - Mathematics

Advertisements
Advertisements

Question

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`2/(3 + 4x)^2`

Sum

Solution

`2/(3 + 4x)^2 = 2/[3(1 + 4/3 x)]^2`

= `2/(9(1 + 4/3 x)^2`

= `2/9(1 + 4/3 x)^(- 2)`

= `2/9[1 - 2(4/3 x) + 3(4/3 x)^2 ...]`

= `2/9[1 - 8/3 x + 16/9 x^2]`

Hence `|(4x)/3| < 1`

⇒ ∴ |x| < `3/4`

shaalaa.com
Infinite Sequences and Series
  Is there an error in this question or solution?
Chapter 5: Binomial Theorem, Sequences and Series - Exercise 5.4 [Page 231]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 5 Binomial Theorem, Sequences and Series
Exercise 5.4 | Q 1. (ii) | Page 231

RELATED QUESTIONS

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(5 + x^2)^(2/3)`


Find `root(3)(10001)` approximately (two decimal places


Prove that `root(3)(x^3 + 6) - root(3)(x^3 + 3)` is approximately equal to `1/x^2` when x is sufficiently large


Write the first 6 terms of the exponential series
`"e"^(-2x)`


Write the first 6 terms of the exponential series
`"e"^(1/2x)`


Write the first 4 terms of the logarithmic series
log(1 + 4x) Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
log(1 – 2x) Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 + 3x)/(1 -3x))` Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 - 2x)/(1 + 2x))` Find the intervals on which the expansions are valid.


If y = `x + x^2/2 + x^3/3 + x^4/4  ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`


If p − q is small compared to either p or q, then show `root("n")("p"/"q")` `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`


Choose the correct alternative:
The coefficient of x8y12 in the expansion of (2x + 3y)20 is


Choose the correct alternative:
If Sn denotes the sum of n terms of an AP whose common difference is d, the value of Sn − 2Sn−1 + Sn−2 is


Choose the correct alternative:
The sum up to n terms of the series `1/(sqrt(1)  +sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) + ...` is 


Choose the correct alternative:
The value of the series `1/2 + 7/4 + 13/8 + 19/16 + ...` is


Choose the correct alternative:
The coefficient of x5 in the series e-2x is


Choose the correct alternative:
The value of `1/(2!) + 1/(4!) + 1/(6!) + ...` is


Choose the correct alternative:
The value of `1 - 1/2(2/3) + 1/3(2/3)^2  1/4(2/3)^3 + ...` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×