English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

If y = x+x22+x33+x44 ..., then show that x = y-y22!+y33!-y44+... - Mathematics

Advertisements
Advertisements

Question

If y = `x + x^2/2 + x^3/3 + x^4/4  ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`

Sum

Solution

y = `x + x^2/2 + x^3/3 + x^4/4  ...`

(i.e) y = `-[-x - x^2/2 - x^3/3 - x^4/4 ...]`

= – log(1 –  x)

(i.e) y = – log(1 –  x) 

= `log  1/(1 - x)`

So `log  1/(1 - x)` = y

⇒ `1/(1 - x)` = ey

⇒ 1 – x = `1/"e"^y`

= e–y

⇒ 1 – x = e–y

⇒ 1 – e–y

= x

(i.e) x = `1 - [1 - y + y^2/(2!) - y^3/(3) + y^4/(4!) ...]`

= `1 - 1 + y - y^2/(2) + y^3/(3!) - y^4/(4!)`

(i.e) x = `y - y^3/(2!) + y^3/(3!) - y^4/(4!) .....`

shaalaa.com
Infinite Sequences and Series
  Is there an error in this question or solution?
Chapter 5: Binomial Theorem, Sequences and Series - Exercise 5.4 [Page 231]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 5 Binomial Theorem, Sequences and Series
Exercise 5.4 | Q 7 | Page 231

RELATED QUESTIONS

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`1/(5 + x)`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`2/(3 + 4x)^2`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(5 + x^2)^(2/3)`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(x + 2) - 2/3`


Find `root(3)(10001)` approximately (two decimal places


Prove that `sqrt((1 - x)/(1 + x))` is approximately euqal to `1 - x + x^2/2` when x is very small


Write the first 6 terms of the exponential series
`"e"^(-2x)`


Write the first 6 terms of the exponential series
`"e"^(1/2x)`


Write the first 4 terms of the logarithmic series
log(1 + 4x) Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 - 2x)/(1 + 2x))` Find the intervals on which the expansions are valid.


If p − q is small compared to either p or q, then show `root("n")("p"/"q")` `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`


Find the value of `sum_("n" = 1)^oo 1/(2"n" - 1) (1/(9^("n" - 1)) + 1/(9^(2"n"- 1)))`


Choose the correct alternative:
If (1 + x2)2 (1 + x)n = a0 + a1x + a2x2 + …. + xn + 4 and if a0, a1, a2 are in AP, then n is


Choose the correct alternative:
If Sn denotes the sum of n terms of an AP whose common difference is d, the value of Sn − 2Sn−1 + Sn−2 is


Choose the correct alternative:
The value of the series `1/2 + 7/4 + 13/8 + 19/16 + ...` is


Choose the correct alternative:
The sum of an infinite GP is 18. If the first term is 6, the common ratio is


Choose the correct alternative:
The value of `1/(2!) + 1/(4!) + 1/(6!) + ...` is


Choose the correct alternative:
The value of `1 - 1/2(2/3) + 1/3(2/3)^2  1/4(2/3)^3 + ...` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×