मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Express -i^-3j^+4k^ as the linear combination of the vectors 2i^+j^-4k^,2i^-j^+3k^ and 3i^+j^-2k^ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Express `- hat"i" - 3hat"j" + 4hat"k"` as the linear combination of the vectors `2hat"i" + hat"j" - 4hat"k", 2hat"i" - hat"j" + 3hat"k"` and `3hat"i" + hat"j" - 2hat"k"`

बेरीज

उत्तर

Let `bar"a" = 2hat"i" + hat"j" - 4hat"k"`, 

`bar"b" = 2hat"i" - hat"j" + 3hat"k"`,

`bar"c" = 3hat"i" + hat"j" - 2hat"k"`

`bar"r" = - hat"i" - 3hat"j" + 4hat"k"`

Suppose `bar"r" = "x"bar"a" + "y"bar"b" + "z"bar"c"`  ...(i) where x, y, z are scalars

Then, `- hat"i" - 3hat"j" + 4hat"k" = "x"(2hat"i" + hat"j" - 4hat"k") + "y"(2hat"i" - hat"j" + 3hat"k") + "z"(3hat"i" + hat"j" - 2hat"k")`

∴ `- hat"i" - 3hat"j" + 4hat"k" = (2"x" + 2"y" + 3"z")hat"i" + ("x" - "y" + "z")hat"j" + (- "4x" + "3y" - "2z")hat"k"`

By equality of vectors, we get

2x + 2y + 3z = −1

x − y + z = −3

−4x + 3y − 2z = 4

We have to solve these equations by using Cramer’s Rule.

D = `|(2,2,3),(1,-1,1),(-4,3,-2)|`

= 2(2 − 3) − 2(− 2 + 4) + 3(3 − 4)

= 2(–1) – 2(2) + 3(–1)

= −2 − 4 − 3

= −9 ≠ 0

Dx = `|(-1,2,3),(-3,-1,1),(4,3,-2)|`

= −1(2 − 3) − 2(6 − 4) + 3(− 9 + 4)

= – 1(– 1) – 2(2) + 3(– 5)

= 1 − 4 − 15

= −18

Dy = `|(2,-1,3),(1,-3,1),(-4,4,-2)|`

= 2(6 − 4) + 1(− 2 + 4) + 3(4 − 12)

= 2(2) + 1(2) + 3(– 8)

= 4 + 2 − 24

= −18

Dz = `|(2,2,-1),(1,-1,-3),(-4,3,4)|`

= 2(− 4 + 9) − 2(4 − 12) − 1(3 − 4)

= 2(5) – 2(– 8) – 1(–1)

= 10 + 16 + 1

= 27

∴ x = `"D"_"x"/"D" = (- 18)/-9 = 2`

∴ y = `"D"_"y"/"D" = (- 18)/-9 = 2`

∴ z = `"D"_"z"/"D" = 27/-9 = - 3`

∴ `bar"r" = 2bar"a" + 2bar"b" - 3bar"c"`     ...[From (i)]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.5: Vectors and Three Dimensional Geometry - Long Answers III

संबंधित प्रश्‍न

if `veca = 2hati - hatj - 2hatk " and " vecb = 7hati + 2hatj - 3hatk`, , then express `vecb` in the form of `vecb = vec(b_1) + vec(b_2)`, where `vec(b_1)`  is parallel to `veca` and `vec(b_2)` is perpendicular to `veca`


If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors such that \[x \vec{a} + y \vec{b} = \vec{0} ,\] then write the values of x and y.


If G denotes the centroid of ∆ABC, then write the value of \[\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} .\]


If D, E, F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC, write the value of \[\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} .\]


If \[\overrightarrow{a}\] is a non-zero vector of modulus a and m is a non-zero scalar such that m \[\overrightarrow{a}\] is a unit vector, write the value of m.


Write a unit vector making equal acute angles with the coordinates axes.


Write a unit vector in the direction of \[\overrightarrow{a} = 3 \hat{i} + 2 \hat{j} + 6 \hat{k} .\]


If \[\overrightarrow{a} = \hat{i} + 2 \hat{j} - 3 \hat{k} \text{ and }\overrightarrow{b} = 2 \hat{i} + 4 \hat{j} + 9 \hat{k} ,\]  find a unit vector parallel to \[\overrightarrow{a} + \overrightarrow{b}\].


Find the value of 'p' for which the vectors \[3 \hat{i} + 2 \hat{j} + 9 \hat{k}\] and \[\hat{i} - 2p \hat{j} + 3 \hat{k}\] are parallel.


In a triangle OAC, if B is the mid-point of side AC and \[\overrightarrow{OA} = \overrightarrow{a} , \overrightarrow{OB} = \overrightarrow{b}\], then what is \[\overrightarrow{OC}\].


Find the components along the coordinate axes of the position vector of the following point :

Q(–5, 1)


Find the position vector of the mid-point of the vector joining the points

\[P \left( 2 \hat{i} - 3\hat{ j} + 4 \hat{k} \right)\text{ and } Q \left( 4 \hat{i} + \hat{j} - 2 \hat{k} \right) .\]

Select the correct option from the given alternatives:

If `|bar"a"| = 3` and - 1 ≤ k ≤ 2, then `|"k"bar"a"|` lies in the interval


Select the correct option from the given alternatives:

Let α, β, γ be distinct real numbers. The points with position vectors `alphahat"i" + betahat"j" + gammahat"k",  betahat"i" + gammahat"j" + alphahat"k",   gammahat"i" + alphahat"j" + betahat"k"`


Let `bara = hati - hatj, barb = hatj - hatk, barc = hatk - hati.` If `bard` is a unit vector such that `bara * bard = 0 = [(barb, barc, bard)]`, then `bard` equals ______.


Select the correct option from the given alternatives:

If `bar"a", bar"b", bar"c"` are non-coplanar unit vectors such that `bar"a"xx (bar"b"xxbar"c") = (bar"b"+bar"c")/sqrt2`, then the angle between `bar"a"  "and"  bar"b"` is 


A point P with position vector `(- 14hat"i" + 39hat"j" + 28hat"k")/5` divides the line joining A (1, 6, 5) and B in the ratio 3 : 2, then find the point B.


If `bar"a", bar"b", bar"c"` are unit vectors such that `bar"a" + bar"b" + bar"c" = bar0,` then find the value of `bar"a".bar"b" + bar"b".bar"c" + bar"c".bar"a".`


Express `hat"i" + 4hat"j" - 4hat"k"` as the linear combination of the vectors `2hat"i" - hat"j" + 3hat"k", hat"i" - 2hat"j" + 4hat"k"` and `- hat"i" + 3hat"j" - 5hat"k"`.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a" xx (bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a" xx(bar"b" xx bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a".(bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a".(bar"b" + bar"c")`


For any vector `overlinex` the value of `(overlinex xx hati)^2 + (overlinex xx hatj)^2 + (overlinex xx hatk)^2` is equal to ______


lf `overlinea`, `overlineb` and `overlinec` are unit vectors such that `overlinea + overlineb + overlinec = overline0` and angle between `overlinea` and `overlineb` is `pi/3`, then `|overlinea xx overlineb| + |overlineb xx overlinec| + |overlinec xx overlinea|` = ______ 


Find the unit vector in the direction of the sum of the vectors `vec"a" = 2hat"i" - hat"j" + 2hat"k"` and `vec"b" = -hat"i" + hat"j" + 3hat"k"`.


If `|vec"a"|` = 8, `|vec"b"|` = 3 and `|vec"a" xx vec"b"|` = 12, then value of `vec"a" * vec"b"` is ______.


If `|vec"a"|` = 3 and –1 ≤ k ≤ 2, then `|"k"vec"a"|` lies in the interval ______.


If `vec"a"` and `vec"b"` are adjacent sides of a rhombus, then `vec"a" * vec"b"` = 0


Classify the following measures as scalar and vector.

40°


Classify the following measures as scalar and vector.

40 watt


Classify the following measures as scalar and vector.

10-19 coulomb


Classify the following as scalar and vector quantity.

Force


`bara, barb` and `barc` are three vectors such that `veca + vecb + vecc` 20,  `|bara| = 1, |barb| = 2` and `|barc| = 3`. Then `bara. barb + barb.barc + bar(c.a)` is equal to


Let `bara, barb` and `barc` be three vectors, then `bara xx (barb xx barc) = (bara xx barb) xx barc` if


For given vectors, `veca = 2hati - hatj + 2hatk` and `vecb = - hati + hatj - hatk` find the unit vector in the direction of the vector `veca + vecb`.


Find `|vecx|`, if for a unit vector `veca, (vecx - veca) * (vecx + veca)` = 12


Let the vectors `vec(a)` such `vec(b)` that `|veca|` = 3 and `|vecb| = sqrt(2)/3`, then `veca xx vecb` is a unit vector if the angle between `veca` and `vecb` is


Check whether the vectors `2hati + 2hatj + 3hatk, - 3hati + 3hatj +2 hatk and 3hati + 4hatk` from a triangle or not.


Check whether the vectors`2hati+2hatj+3hatk,-3hati+3hatj+2hatk and 3hati +4hatk` form a triangle or not.


Find the value of λ for which the points (6, – 1, 2), (8, – 7, λ) and (5, 2, 4) are collinear.


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk` and `3hati + 4hatk` form a triangle or not.


If `|veca| = 3, |vecb| = sqrt(2)/3` and `veca xx vecb` is a unit vector then the angle between `veca` and `vecb` will be ______.


Check whether the vectors `2hati + 2hatj +3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×