मराठी

If a|a→| = 3 and –1 ≤ k ≤ 2, then ka|ka→| lies in the interval ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `|vec"a"|` = 3 and –1 ≤ k ≤ 2, then `|"k"vec"a"|` lies in the interval ______.

पर्याय

  • [0, 6]

  • [– 3, 6]

  • [3, 6]

  • [1, 2]

MCQ
रिकाम्या जागा भरा

उत्तर

If `|vec"a"|` = 3 and –1 ≤ k ≤ 2, then `|"k"vec"a"|` lies in the interval [0, 6].

Explanation:

The smallest value of `|"k"vec"a"|` will exist at numerically smallest value of k

i.e., at k = 0

Which gives `|"k"vec"a"| = |"k"||vec"a"|`

= 0 × 3

= 0

The numerically greatest value of k is 2 at which `|"k"vec"a"|` = 6.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Solved Examples [पृष्ठ २१४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 10 Vector Algebra
Solved Examples | Q 21 | पृष्ठ २१४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If D, E, F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC, write the value of \[\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} .\]


Write the position vector of a point dividing the line segment joining points having position vectors \[\hat{i} + \hat{j} - 2 \hat{k} \text{ and }2 \hat{i} - \hat{j} + 3 \hat{k}\] externally in the ratio 2:3.


\[\text{ If } \overrightarrow{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \overrightarrow{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k} \text{ and }\overrightarrow{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \overrightarrow{a} - 2 \overrightarrow{b} + 4 \overrightarrow{c} \right| .\]

Find a unit vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - 3 \hat{j} + 6 \hat{k}\].


Find a unit vector in the direction of the vector \[\overrightarrow{a} = 3 \hat{i} - 2 \hat{j} + 6 \hat{k}\].


If \[\left| \overrightarrow{a} \right| = 4\] and \[- 3 \leq \lambda \leq 2\], then write the range of \[\left| \lambda \vec{a} \right|\].


Let G be the centroid of ∆ ABC. If \[\overrightarrow{AB} = \vec{a,} \overrightarrow{AC} = \vec{b,}\] then the bisector \[\overrightarrow{AG} ,\] in terms of \[\vec{a}\text{ and }\vec{b}\] is


If ABCDEF is a regular hexagon, then \[\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}\] equals

 


If \[\vec{a}\text{ and }\vec{b}\] are two collinear vectors, then which of the following are incorrect?


Find the components along the coordinate axes of the position vector of the following point :

P(3, 2)


Find the components along the coordinate axes of the position vector of the following point :

Q(–5, 1)


Select the correct option from the given alternatives:

If `|bar"a"| = 3` and - 1 ≤ k ≤ 2, then `|"k"bar"a"|` lies in the interval


Dot product of a vector with vectors `3hat"i" - 5hat"k",  2hat"i" + 7hat"j" and hat"i" + hat"j" + hat"k"` are respectively -1, 6 and 5. Find the vector.


Express the vector `bar"a" = 5hat"i" - 2hat"j" + 5hat"k"` as a sum of two vectors such that one is parallel to the vector `bar"b" = 3hat"i" + hat"k"` and other is perpendicular to `bar"b"`.


Find a unit vector perpendicular to the plane containing the point (a, 0, 0), (0, b, 0) and (0, 0, c). What is the area of the triangle with these vertices?


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b")bar"c"`


a and b are non-collinear vectors. If p = (2x + 1) a - band q = (x - 2)a +b are collinear vectors, then x = ______.


If A, B, C and D are (3, 7, 4), (5, -2, - 3), (- 4, 5, 6) and(1, 2, 3) respectively, then the volume of the parallelopiped with AB, AC and AD as the co-terminus edges, is ______ cubic units.


For any non zero vector, a, b, c a · ((b + c) × (a + b + c)] = ______.


If the vectors `overlinea = 2hati - qhatj + 3hatk` and `overlineb = 4hati - 5hatj + 6hatk` are collinear, then the value of q is ______


Find the unit vector in the direction of the sum of the vectors `vec"a" = 2hat"i" - hat"j" + 2hat"k"` and `vec"b" = -hat"i" + hat"j" + 3hat"k"`.


The angle between the vectors `hat"i" - hat"j"` and `hat"j" - hat"k"` is ______.


Classify the following as scalar and vector quantity.

Force


Let `bara, barb` and `barc` be three vectors, then `bara xx (barb xx barc) = (bara xx barb) xx barc` if


The unit vector perpendicular to the vectors `6hati + 2hatj + 3hatk` and `3hati - 6hatj - 2hatk` is


For given vectors, `veca = 2hati - hatj + 2hatk` and `vecb = - hati + hatj - hatk` find the unit vector in the direction of the vector `veca + vecb`.


In the triangle PQR, `bar(PQ)` = `2bara` and `bar(QR)` = `2barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


Evaluate the following.

`int x^3/(sqrt1 + x^4) `dx


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×