Advertisements
Advertisements
प्रश्न
Express in terms of log 2 and log 3 :
`"log"75/16 - 2"log"5/9 + "log"32/243`
उत्तर
`"log"75/16 - 2"log"5/9 + "log"32/243`
= `"log"75/16 - "log"(5/9)^2 + "log"32/243`
= `"log"75/16 - "log"( 5/9 xx 5/9 ) + "log"32/243`
= `"log"75/16 - "log"25/81 + "log"32/243`
= `"log"((75/16)/(25/81)) .....[ log_am - log_an = log_a(m/n)]`
= `"log"(75/16) xx (81/25) + log(32/243)`
= `"log"( 3 xx 25)/16 xx 81/25 + "log"32/243`
= `"log"243/16 + "log"32/243`
= `"log"( 243/16 xx 32/243 )` .....[logam + logan = logamn]
= `"log"32/16`
= log 2
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 :
`"log"26/51 - "log"91/119`
Express the following in a form free from logarithm:
2 log x - log y = 1
Prove that : `2"log" 15/18 - "log"25/162 + "log"4/9 = log 2 `
Find x, if : x - log 48 + 3 log 2 = `1/3`log 125 - log 3.
Express log102 + 1 in the form of log10x .
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 25
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log `2 1/4`
Solve for x : ` (log 64)/(log 8)` = log x
If log102 = a and log103 = b; express each of the following in terms of 'a' and 'b' : log `3 1/8`
State, true or false :
log x x log y = log x + log y