Advertisements
Advertisements
प्रश्न
Factories: (x2 - 3x)(x2 - 3x - 1) - 20.
उत्तर
(x2 - 3x)(x2 - 3x - 1) - 20
= (x2 - 3x)[(x2 - 3x) - 1] - 20
= a[a - 1] - 20 ….( Taking x2 - 3x = a )
= a2 - a - 20
= a2 - 5a + 4a - 20
= a(a - 5) + 4(a - 5)
= (a - 5)(a + 4)
= (x2 - 3x - 5)(x2 - 3x + 4)
APPEARS IN
संबंधित प्रश्न
Factorise:
(2a + b)2 - 6a - 3b - 4
Factorise : (3x - 2y)2 + 3 (3x - 2y) - 10
Factorise : 5 - (3a2 - 2a) (6 - 3a2 + 2a)
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
x(2x - 1) - 1
Factorise the following:
9x2 - 22xy + 8y2
Factorise the following:
x2y2 + 15xy - 16
Factorise the following:
(2p + q)2 - 10p - 5q - 6
Factorise the following:
(y2 - 3y)(y2 - 3y + 7) + 10
Factorise the following:
p4 + 23p2q2 + 90q4
Factorise the following:
2a3 + 5a2b - 12ab2