Advertisements
Advertisements
प्रश्न
Factories: (x2 - 3x)(x2 - 3x - 1) - 20.
उत्तर
(x2 - 3x)(x2 - 3x - 1) - 20
= (x2 - 3x)[(x2 - 3x) - 1] - 20
= a[a - 1] - 20 ….( Taking x2 - 3x = a )
= a2 - a - 20
= a2 - 5a + 4a - 20
= a(a - 5) + 4(a - 5)
= (a - 5)(a + 4)
= (x2 - 3x - 5)(x2 - 3x + 4)
APPEARS IN
संबंधित प्रश्न
Factorise.
x2 + 9x + 18
Factorise:
(2a + b)2 - 6a - 3b - 4
Factorise : 1 - 2a - 2b - 3 (a + b)2
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
2x2 - 7x - 15
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
x(2x - 1) - 1
Factorise the following by splitting the middle term:
x2 + 5x - 6
Factorise the following by splitting the middle term:
3x2 + 19x - 14
Factorise the following:
5x2 - 17xy + 6y2
Factorise the following:
x3y3 - 8x2y2 + 15xy
Factorise the following:
5 - 4(a - b) - 12(a - b)2