Advertisements
Advertisements
प्रश्न
Factorise : 4x2 - 12ax - y2 - z2 - 2yz + 9a2
उत्तर
4x2 - 12ax - y2 - z2 - 2yz + 9a2
= 4x2 + 9a2 - 12ax - y2 - z2 - 2yz
= ( 2x )2 + ( 3a )2 - 12ax - ( y2 + z2 + 2yz )
= ( 2x - 3a )2 - ( y + z )2
= [( 2x - 3a ) - ( y + z )][( 2x - 3a ) + ( y + z )]
[ ∵ a2 - b2 = ( a + b )( a - b )]
= [ 2x - 3a - y - z ][ 2x - 3a + y + z ]
APPEARS IN
संबंधित प्रश्न
Factorise : a2 - 81 (b-c)2
Factorise : 25(2a - b)2 - 81b2
Factorise : 4a2b - 9b3
Factorise : `x^2 + 1/x^2 - 11`
Factorise : `4x^2 + 1/(4x)^2 + 1`
Factorise the following by the difference of two squares:
441 - 81y2
Factorise the following by the difference of two squares:
a(a - 1) - b(b - 1)
Factorise the following by the difference of two squares:
(x + y)2 -1
Factorise the following:
a2 + b2 - c2 - d2 + 2ab - 2cd
Factorise the following:
y4 + y2 + 1