Advertisements
Advertisements
प्रश्न
Factorise : 4x2 - 12ax - y2 - z2 - 2yz + 9a2
उत्तर
4x2 - 12ax - y2 - z2 - 2yz + 9a2
= 4x2 + 9a2 - 12ax - y2 - z2 - 2yz
= ( 2x )2 + ( 3a )2 - 12ax - ( y2 + z2 + 2yz )
= ( 2x - 3a )2 - ( y + z )2
= [( 2x - 3a ) - ( y + z )][( 2x - 3a ) + ( y + z )]
[ ∵ a2 - b2 = ( a + b )( a - b )]
= [ 2x - 3a - y - z ][ 2x - 3a + y + z ]
APPEARS IN
संबंधित प्रश्न
Factorise : 25a2 - 9b2
Factorise : a2 - (2a + 3b)2
Factorise : 4a2b - 9b3
Factorise : 4xy - x2 - 4y2 + z2
Factorise : a2 ( b + c) - (b + c)3
Factorise the following by the difference of two squares:
x2 - 16
Factorise the following by the difference of two squares:
a(a - 1) - b(b - 1)
Factorise the following:
(2a - b)2 -9(3c - d)2
Factorise the following:
4xy - x2 - 4y2 + z2
Express each of the following as the difference of two squares:
(x2 + 2x - 3) (x2 - 2x + 3)