Advertisements
Advertisements
प्रश्न
Factorize x4 + x2 y2 + y4
उत्तर
Adding x2 y2 and subtracting x2 y2 to the given equation.
= x4 + x2 y2 + y4 + x2 y2 - x2 y2
= x4 + 2x2 y2 + y4 - x2 y2
= (x2 )2 + 2 x x2 x y2 + ( y2 )2 - ( xy)2
Using identity a2 + 2ab + b2 = (a + b)2
= (x2 + y2 )2 - ( xy)2
Using identity a2 - b2 = (a + b)(a - b)
= (x2 + y2 + xy)(x2 + y2 - xy )
∴ x4 + x2 y2 + y4 = (x2 + y2 + xy)(x2 + y2 - xy)
APPEARS IN
संबंधित प्रश्न
Factorize : x2 + y - xy - x
Factorize x( x - 2)( x - 4) + 4x - 8
Factorize x2 - y2 - 4xz + 4z2
Factorize `9(2a - b)^2 - 4(2a - b) - 13`
Factorize the following expressions:
a12 + b12
Factorize `8/27 x^3 + 1 + 4/3 x^2 + 2x`
Write the number of the term of the following polynomial.
5x2 + 3 x ax
Divide: 10x3y - 9xy2 - 4x2y2 by xy
Complete the table.
× | 2x2 | −2xy | x4y3 | 2xyz | (___)xz2 |
x4 | |||||
(___) | 4x5y4 | ||||
−x2y | |||||
2y2z | −10xy2z3 | ||||
−3xyz | |||||
(___) | −14xyz2 |
A taxi service charges ₹ 8 per km and levies a fixed charge of ₹ 50. Write an algebraic expression for the above situation, if the taxi is hired for x km.