Advertisements
Advertisements
Question
Factorize x4 + x2 y2 + y4
Solution
Adding x2 y2 and subtracting x2 y2 to the given equation.
= x4 + x2 y2 + y4 + x2 y2 - x2 y2
= x4 + 2x2 y2 + y4 - x2 y2
= (x2 )2 + 2 x x2 x y2 + ( y2 )2 - ( xy)2
Using identity a2 + 2ab + b2 = (a + b)2
= (x2 + y2 )2 - ( xy)2
Using identity a2 - b2 = (a + b)(a - b)
= (x2 + y2 + xy)(x2 + y2 - xy )
∴ x4 + x2 y2 + y4 = (x2 + y2 + xy)(x2 + y2 - xy)
APPEARS IN
RELATED QUESTIONS
Factorize `[x^2 + 1/x^2] - 4[x + 1/x] + 6`
Factorize the following expressions:
x6 + y6
125 + 8x3 - 27 y3 + 90xy
`3sqrt3a^3 - b^3 - 5sqrt5c^3 - 3sqrt15abc`
Simplify : \[\frac{1 . 2 \times 1 . 2 \times 1 . 2 - 0 . 2 \times 0 . 2 \times 0 . 2}{1 . 2 \times 1 . 2 + 1 . 2 \times 0 . 2 + 0 . 2 \times 0 . 2}\]
Find the value of x3 + y3 − 12xy + 64, when x + y =−4
Multiply: (2x + 5y + 6)(3x + y - 8)
Find the average (A) of four quantities p, q, r and s. If A = 6, p = 3, q = 5 and r = 7; find the value of s.
If x = 2 and y = 3, then find the value of the following expressions
2x – 3y
The value of 7a – 4b when a = 3, b = 2 is