Advertisements
Advertisements
प्रश्न
Find the circumcenter of the triangle whose vertices are (-2, -3), (-1, 0), (7, -6).
उत्तर
The circumference of a triangle is equidistance from the vertices of a triangle.
Let A(-2, -3), B(-1, 0) and C(7, -6) vertices of the given triangle and let P(x,y) be the circumference of this triangle, Then
PA = PB = PC
Now, PA = PB
`=> sqrt((-2-x)^2 + (-3 -y)^2) = sqrt((-1 - x)^2 + (0 - y)^2`
`=> 4 + x^2 + 4x + 9 + y^2 + 6y = 1 + x^2 + 2xz + y^2`
`=> 4 + x^2 + 4x + 9 + y^2 + 6y - 1 - x^2 - 2x - y^2 = 0`
`=> 2x + 6y + 12 = 0
=> 2(x + 3y + 6) = 0
=> x + 3y + 6 = 0 ... eq (1)
And PB = PC
`=> sqrt((-1-x)^2 + (0 - y)^2) = sqrt((7- x)^2 + (-6 - y)^2)`
Squaring both the sides
`=> (-1 - x)^2 + y^2 = (7 - x)^2 + (-6 -y)^2`
`=> 1 + x^2 + 2x + y^2 = (7 - x)^2 + (-6 - y)^2`
`=> 1 + x^2 + 2x + y^2 - 49 - x^2 + 14x - 36 - y^2 - 12y`
=> 16x - 12y - 84 = 0
`=> 4(4x - 3y - 21) = 0`
=> 4x - 3y - 21 = 0 ......eq(2)
Adding eq(1) and eq(2)
`=> x + 3y + 6 + 4x - 3y - 21 = 0`
=> x + 3y + 6 + 4x -3y - 21 = 0
=> 5x - 15 = 0
=> x = 15/5`
=> x = 3
putting the value of x in eq (2) and
we get
`=> 4 x 3 - 3y - 21 = 0`
`=> 12 - 3y - 21 = 0`
`=> -3y - 9 = 0`
`=> y = (-9)/3 = -3`
So the coordinates of the circumcentre P are (3, -3)
APPEARS IN
संबंधित प्रश्न
If A(5, 2), B(2, −2) and C(−2, t) are the vertices of a right angled triangle with ∠B = 90°, then find the value of t.
Given a line segment AB joining the points A(–4, 6) and B(8, –3). Find
1) The ratio in which AB is divided by y-axis.
2) Find the coordinates of the point of intersection.
3) The length of AB.
Find the co-ordinates of points of trisection of the line segment joining the point (6, –9) and the origin.
Find the distance between the points
P(a + b,a - b)andQ(a -b,a + b)
Prove that the points (5 , 3) , (1 , 2), (2 , -2) and (6 ,-1) are the vertices of a square.
Find the co-ordinates of points on the x-axis which are at a distance of 17 units from the point (11, -8).
Show that (-3, 2), (-5, -5), (2, -3) and (4, 4) are the vertices of a rhombus.
If the point (x, y) is at equidistant from the point (a + b, b – a) and (a-b, a + b). Prove that ay = bx.
Find distance between points O(0, 0) and B(– 5, 12)
Find the distance between the points O(0, 0) and P(3, 4).