मराठी

Find the Co-ordinates of Points on the X-axis Which Are at a Distance of 17 Units from the Point (11, -8). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the co-ordinates of points on the x-axis which are at a distance of 17 units from the point (11, -8).

बेरीज

उत्तर

Let the coordinates of the point on x-axis be (x, 0).
From the given information, we have:
`sqrt((x -11)^2 + (0 + 8)^2)` = 17
(x - 11)2 + (0 + 8)2 = 289
x2 + 121 - 22x + 64 = 289
x2 - 22x - 104 = 0
x2 - 26x + 4x - 104 = 0
x(x - 26) + 4(x - 26) = 0
(x - 26)(x + 4) = 0
x = 26, -4
Thus, the required co-ordinates of the points on x-axis are (26, 0) and (-4, 0).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Distance Formula - Exercise 28 [पृष्ठ ३३५]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 28 Distance Formula
Exercise 28 | Q 4 | पृष्ठ ३३५

संबंधित प्रश्‍न

Show that the points (a, a), (–a, –a) and (– √3 a, √3 a) are the vertices of an equilateral triangle. Also find its area.


Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:

(- 1, - 2), (1, 0), (- 1, 2), (- 3, 0)


Name the type of quadrilateral formed, if any, by the following point, and give reasons for your answer:

(4, 5), (7, 6), (4, 3), (1, 2)


Find the distance between the points

(i) A(9,3) and B(15,11)

 


Find the distance of  the following points from the origin:

(ii) B(-5,5)


Find the value of m if the distance between the points (m , -4) and (3 , 2) is 3`sqrt 5` units.


Find the distance between P and Q if P lies on the y - axis and has an ordinate 5 while Q lies on the x - axis and has an abscissa 12 .


Prove that the following set of point is collinear :

(5 , 1),(3 , 2),(1 , 3)


Prove that the points (6 , -1) , (5 , 8) and (1 , 3) are the vertices of an isosceles triangle.


Prove that the points (5 , 3) , (1 , 2), (2 , -2) and (6 ,-1) are the vertices of a square.


Prove that the points (4 , 6) , (- 1 , 5) , (- 2, 0) and (3 , 1) are the vertices of a rhombus.


A point P lies on the x-axis and another point Q lies on the y-axis.
Write the abscissa of point Q.


Find the distance of the following points from origin.
(5, 6) 


Find distance between point A(– 3, 4) and origin O


Seg OA is the radius of a circle with centre O. The coordinates of point A is (0, 2) then decide whether the point B(1, 2) is on the circle?


A circle drawn with origin as the centre passes through `(13/2, 0)`. The point which does not lie in the interior of the circle is ______.


Case Study -2

A hockey field is the playing surface for the game of hockey. Historically, the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape - 100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must be 3.66 metres (4 yards) apart, and the lower edge of the crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie. Positions you might play include -

  • Forward: As shown by players A, B, C and D.
  • Midfielders: As shown by players E, F and G.
  • Fullbacks: As shown by players H, I and J.
  • Goalie: As shown by player K.

Using the picture of a hockey field below, answer the questions that follow:

If a player P needs to be at equal distances from A and G, such that A, P and G are in straight line, then position of P will be given by ______.


∆ABC with vertices A(–2, 0), B(2, 0) and C(0, 2) is similar to ∆DEF with vertices D(–4, 0), E(4, 0) and F(0, 4).


If (a, b) is the mid-point of the line segment joining the points A(10, –6) and B(k, 4) and a – 2b = 18, find the value of k and the distance AB.


Tharunya was thrilled to know that the football tournament is fixed with a monthly timeframe from 20th July to 20th August 2023 and for the first time in the FIFA Women’s World Cup’s history, two nations host in 10 venues. Her father felt that the game can be better understood if the position of players is represented as points on a coordinate plane.

  1. At an instance, the midfielders and forward formed a parallelogram. Find the position of the central midfielder (D) if the position of other players who formed the parallelogram are :- A(1, 2), B(4, 3) and C(6, 6)
  2. Check if the Goal keeper G(–3, 5), Sweeper H(3, 1) and Wing-back K(0, 3) fall on a same straight line.
    [or]
    Check if the Full-back J(5, –3) and centre-back I(–4, 6) are equidistant from forward C(0, 1) and if C is the mid-point of IJ.
  3. If Defensive midfielder A(1, 4), Attacking midfielder B(2, –3) and Striker E(a, b) lie on the same straight line and B is equidistant from A and E, find the position of E.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×