Advertisements
Advertisements
प्रश्न
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3y2 = –16x
उत्तर
Given equation of the parabola is 3y2 = –16x.
∴ y2 = `-16/3"x"`
Comparing this equation with y2 = – 4ax, we get
4a = `16/3`
∴ a = `4/3`
Co-ordinates of focus are S(–a, 0), i.e., S`(-4/3, 0)`
Equation of the directrix is x – a = 0,
i.e., `"x" - 4/3` = 0 i.e., 3x – 4 = 0
Length of latus rectum = 4a = `4(4/3) = 16/3`
Co-ordinates of end points of latus rectum are (–a, 2a) and (–a, –2a), i.e., `(-4/3, 8/3)` and `(-4/3, -8/3)`.
APPEARS IN
संबंधित प्रश्न
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
5y2 = 24x
Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)
For the parabola 3y2 = 16x, find the parameter of the point (27, –12).
For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17
Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)
Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3
Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)
Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)
A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.
Show that the circle touches the directrix of the parabola.
Select the correct option from the given alternatives:
The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________
Select the correct option from the given alternatives:
The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
2y2 = 17x
Answer the following:
Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it
Answer the following:
Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
16x2 + 25y2 = 400
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
`x^2/144 - y^2/25` = 1
The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.
The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.
The equation of the directrix of the parabola 3x2 = 16y is ________.
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.
The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.
Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.
The equation of the line touching both the parabolas y2 = x and x2 = y is ______.
If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.
The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.