मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17

बेरीज

उत्तर

Given parabola is y2 = 4x

Comparing with y2 = 4ax, we get,

4a = 4

∴ a = 1

Let P(x1, y1) be he required point on the parabola y2 = 4x, whose focal distance is 17.

∴ x1 + a = 17, where a = 1

∴ x1 + 1 = 17

x1 = 16

Since P(x1, y1) lies on y2 = 4x,

`y_1^2` = 4x1 

∴ `y_1^2` = 4(16) = 64

∴ y1 = ± 8

Hence, coordinates of required points on the parabola are (16, 8) and (16, – 8).

shaalaa.com
Conic Sections - Parabola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Exercise 7.1 [पृष्ठ १४९]

APPEARS IN

संबंधित प्रश्‍न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

5y2 = 24x


Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)


Find coordinates of the point on the parabola. Also, find focal distance.

y2 = 12x whose parameter is `1/3`


Find coordinates of the point on the parabola. Also, find focal distance.

2y2 = 7x whose parameter is –2


Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)


If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k


Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y


Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Select the correct option from the given alternatives:

The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

5x2 = 24y


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2


Answer the following:

Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10


Answer the following:

Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it


Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.


The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.


The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.


If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×