English

For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17 - Mathematics and Statistics

Advertisements
Advertisements

Question

For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17

Sum

Solution

Given parabola is y2 = 4x

Comparing with y2 = 4ax, we get,

4a = 4

∴ a = 1

Let P(x1, y1) be he required point on the parabola y2 = 4x, whose focal distance is 17.

∴ x1 + a = 17, where a = 1

∴ x1 + 1 = 17

x1 = 16

Since P(x1, y1) lies on y2 = 4x,

`y_1^2` = 4x1 

∴ `y_1^2` = 4(16) = 64

∴ y1 = ± 8

Hence, coordinates of required points on the parabola are (16, 8) and (16, – 8).

shaalaa.com
Conic Sections - Parabola
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.1 [Page 149]

RELATED QUESTIONS

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).


Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).


Find coordinates of the point on the parabola. Also, find focal distance.

2y2 = 7x whose parameter is –2


Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)


Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).


Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y


Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3


The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.


Select the correct option from the given alternatives:

The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

2y2 = 17x


Answer the following:

Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10


Answer the following:

Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it


Answer the following:

Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


The equation of the directrix of the parabola 3x2 = 16y is ________.


Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.


If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.


Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?


The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


The equation of the line touching both the parabolas y2 = x and x2 = y is ______.


A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.


The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×