English

Answer the following: Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10). - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).

Sum

Solution

The equation of the parabola is y2 = 9x

Comparing with y2 = 4ax, we get,

4a = 9

∴ a = `9/4`

Let m be the slope of the tangent drawn from the point (4, 10) to the parabola.

∴ its equation is

y = `"m"x + "a"/"m"`

∴ y = `"m"x + 9/(4"m")`

∵ (4, 10) lies on it

∴ 10 = `4"m" + 9/(4"m") = (16"m"^2 + 9)/(4"m")`

∴ 40m = 16m2 + 9

∴ 16m2 – 40m + 9 = 0

∴ 16m2 – 4m – 36m + 9 = 0

∴ 4m(4m – 1) – 9(4m – 1) = 0

∴ (4m – 1)(4m – 9) = 0

∴ m = `1/4` or m = `9/4`

Using slope-point form, the equations of tangents are

y – 10 = `1/4(x - 4)` and y – 10 = `9/4(x - 4)`

∴ 4y – 40 = x – 4 and 4y – 40 = 9x – 36 

∴ x – 4y + 36 = 0 and 9x – 4y + 4 = 0.

shaalaa.com
Conic Sections - Parabola
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Miscellaneous Exercise 7 [Page 177]

APPEARS IN

RELATED QUESTIONS

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3x2 = 8y


Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa


For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.


Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3


Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)


Select the correct option from the given alternatives:

The endpoints of latus rectum of the parabola y2 = 24x are _______


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Select the correct option from the given alternatives:

The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

5x2 = 24y


Answer the following:

Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it


Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle


Answer the following:

A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.


Answer the following:

The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

x2 − y2 = 16


The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.


The equation of the directrix of the parabola 3x2 = 16y is ________.


If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.


Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.


The equation of the line touching both the parabolas y2 = x and x2 = y is ______.


Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×