English

Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3

Sum

Solution

The equation of the parabola is x2 – 2x + 3 = y

∴ x2 – 2x + 1 = y – 2

∴ (x – 1)2 = y – 2

Comparing with X2 = 4bY, we get

X = x – 1, Y = y – 2, 4b = 1

∴ b = `1/4`

Coordinates of the focus are given by

X = 0, Y = b

∴ x – 1 = 0,  y – 2 = `1/4`

∴ x = 1, y = `9/4`

∴ focus = `(1, 9/4)`

Coordinates of the vertex are X = 0, Y = 0

∴ x – 1 = 0, y – 2 = 0

∴ x = 1, y = 2

∴ vertex = (1, 2)

Equation of directrix is

Y + b = 0

∴ `y - 2 + 1/4` = 0

∴ 4y – 7 = 0

Equation of axis is X = 0

∴ x – 1 = 0, i.e., x = 1.

shaalaa.com
Conic Sections - Parabola
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.1 [Page 149]

RELATED QUESTIONS

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

x2 = –8y


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find coordinates of the point on the parabola. Also, find focal distance.

y2 = 12x whose parameter is `1/3`


Find coordinates of the point on the parabola. Also, find focal distance.

2y2 = 7x whose parameter is –2


For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.


Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)


Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)


Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3


A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.

Show that the circle touches the directrix of the parabola.


Select the correct option from the given alternatives:

The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

2y2 = 17x


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is −3


Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

x2 − y2 = 16


The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.


The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.


The equation of the directrix of the parabola 3x2 = 16y is ________.


The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.


If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.


Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?


Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.


Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.


The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×