Advertisements
Advertisements
Question
Find coordinates of the point on the parabola. Also, find focal distance.
2y2 = 7x whose parameter is –2
Solution
Given equation of the parabola is 2y2 = 7x
∴ y2 = `7/2x`
Comparing this equation with y2 = 4ax, we get
4a = `7/2`
∴ a = `7/8`
If t is the parameter of the point P on the parabola, then
P(t) ≡ (at2, 2at)
i.e., x = at2 and y = 2at …(i)
Given, t = – 2
Substituting a = `7/8` and t = – 2 in (i), we get
x = `7/8(-2)^2` and y = `2(7/8)(-2)`
∴ x = `7/2` and y = `-7/2`
∴ The co-ordinates of the point on the parabola are `(7/2, -7/2)`.
Focal distance = x + a = `7/2 + 7/8 = 35/8`
APPEARS IN
RELATED QUESTIONS
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
x2 = –8y
Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)
For the parabola 3y2 = 16x, find the parameter of the point (27, –12).
Find coordinates of the point on the parabola. Also, find focal distance.
y2 = 12x whose parameter is `1/3`
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.
Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3
If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k
Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).
Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y
The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.
A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.
Show that the circle touches the directrix of the parabola.
Select the correct option from the given alternatives:
The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______
Select the correct option from the given alternatives:
If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is
Select the correct option from the given alternatives:
The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________
Select the correct option from the given alternatives:
The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
2y2 = 17x
Answer the following:
Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2
Answer the following:
Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10
Answer the following:
Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it
Answer the following:
Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
x2 − y2 = 16
The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.
The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.
The equation of the directrix of the parabola 3x2 = 16y is ________.
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.
Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.
Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.
If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.
If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.
Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.
Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.
If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.
Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.