मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find coordinates of the point on the parabola. Also, find focal distance. 2y2 = 7x whose parameter is –2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find coordinates of the point on the parabola. Also, find focal distance.

2y2 = 7x whose parameter is –2

बेरीज

उत्तर

Given equation of the parabola is 2y2 = 7x

∴ y2 = `7/2x`

Comparing this equation with y2 = 4ax, we get

4a = `7/2`

∴ a = `7/8`

If t is the parameter of the point P on the parabola, then

P(t) ≡ (at2, 2at)

i.e., x = at2 and y = 2at  …(i)

Given, t = – 2

Substituting a = `7/8` and t = – 2 in (i), we get

x = `7/8(-2)^2` and  y = `2(7/8)(-2)`

∴ x = `7/2` and y = `-7/2`

∴ The co-ordinates of the point on the parabola are `(7/2, -7/2)`.

Focal distance = x + a = `7/2 + 7/8 = 35/8`

shaalaa.com
Conic Sections - Parabola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Exercise 7.1 [पृष्ठ १४९]

APPEARS IN

संबंधित प्रश्‍न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3x2 = 8y


For the parabola 3y2 = 16x, find the parameter of the point (3, – 4).


Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa


Find coordinates of the point on the parabola. Also, find focal distance.

y2 = 12x whose parameter is `1/3`


For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3


Select the correct option from the given alternatives:

The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Select the correct option from the given alternatives:

The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it


Answer the following:

Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.


Answer the following:

The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

x2 − y2 = 16


The equation of the directrix of the parabola 3x2 = 16y is ________.


Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.


If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.


The equation of the line touching both the parabolas y2 = x and x2 = y is ______.


Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.


A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.


If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×