Advertisements
Advertisements
प्रश्न
Select the correct option from the given alternatives:
The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________
पर्याय
y2 = 4x
y2 = 8x
y2 = –16x
x2 = 8y
उत्तर
y2 = 8x
Explanation:
The given points lie in the 1st and 4th quadrants.
∴ Equation of the parabola is y2 = 4ax
Endpoints of latus rectum are (a, 2a) and (a, – 2a)
∴ a = 2
∴ required equation of a parabola is y2 = 8x
APPEARS IN
संबंधित प्रश्न
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3y2 = –16x
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)
For the parabola 3y2 = 16x, find the parameter of the point (3, – 4).
Find coordinates of the point on the parabola. Also, find focal distance.
y2 = 12x whose parameter is `1/3`
Find coordinates of the point on the parabola. Also, find focal distance.
2y2 = 7x whose parameter is –2
Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)
Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3
The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.
Select the correct option from the given alternatives:
The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______
Select the correct option from the given alternatives:
Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
2y2 = 17x
Answer the following:
Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is −3
Answer the following:
Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10
Answer the following:
Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle
Answer the following:
A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).
Answer the following:
The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
16x2 + 25y2 = 400
The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.
The equation of the directrix of the parabola 3x2 = 16y is ________.
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.
If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.
The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.
Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?
The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.
The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.
The equation of the line touching both the parabolas y2 = x and x2 = y is ______.
A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.
Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.
The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.