Advertisements
Advertisements
प्रश्न
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)
उत्तर
Vertex of the parabola is at the origin (0, 0) and its axis is along X-axis.
∴ Equation of the parabola can be either
y2 = 4ax or y2 = – 4ax
Since the parabola passes through (3, 4), it lies in 1st quadrant.
∴ Required parabola is y2 = 4ax.
Substituting x = 3 and y = 4 in y2 = 4ax, we get
(4)2 = 4a(3)
∴ a = `16/12 = 4/3`
∴ The required equation of the parabola is
y2 = `4(4/3)`x, i.e., y2 = `(16/3)`x, i.e., 3y2 = 16x.
APPEARS IN
संबंधित प्रश्न
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
5y2 = 24x
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
y2 = –20x
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3x2 = 8y
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3y2 = –16x
Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)
For the parabola 3y2 = 16x, find the parameter of the point (3, – 4).
Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.
Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)
Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3
Select the correct option from the given alternatives:
The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______
Select the correct option from the given alternatives:
If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
2y2 = 17x
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
5x2 = 24y
Answer the following:
Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is −3
Answer the following:
Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).
Answer the following:
A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.
Answer the following:
The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
`x^2/144 - y^2/25` = 1
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
x2 − y2 = 16
The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.
The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.
The equation of the directrix of the parabola 3x2 = 16y is ________.
Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.
If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.
Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?
Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.
The equation of the line touching both the parabolas y2 = x and x2 = y is ______.
Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.
Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.
If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.
Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.
The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.