Advertisements
Advertisements
प्रश्न
Answer the following:
Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).
उत्तर
The equation of the parabola is y2 = 9x
Comparing with y2 = 4ax, we get,
4a = 9
∴ a = `9/4`
Let m be the slope of the tangent drawn from the point (4, 10) to the parabola.
∴ its equation is
y = `"m"x + "a"/"m"`
∴ y = `"m"x + 9/(4"m")`
∵ (4, 10) lies on it
∴ 10 = `4"m" + 9/(4"m") = (16"m"^2 + 9)/(4"m")`
∴ 40m = 16m2 + 9
∴ 16m2 – 40m + 9 = 0
∴ 16m2 – 4m – 36m + 9 = 0
∴ 4m(4m – 1) – 9(4m – 1) = 0
∴ (4m – 1)(4m – 9) = 0
∴ m = `1/4` or m = `9/4`
Using slope-point form, the equations of tangents are
y – 10 = `1/4(x - 4)` and y – 10 = `9/4(x - 4)`
∴ 4y – 40 = x – 4 and 4y – 40 = 9x – 36
∴ x – 4y + 36 = 0 and 9x – 4y + 4 = 0.
APPEARS IN
संबंधित प्रश्न
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
5y2 = 24x
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
x2 = –8y
Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)
For the parabola 3y2 = 16x, find the parameter of the point (27, –12).
For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17
Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.
Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)
Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)
If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k
Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y
Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3
Select the correct option from the given alternatives:
If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is
Select the correct option from the given alternatives:
The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______
Select the correct option from the given alternatives:
The endpoints of latus rectum of the parabola y2 = 24x are _______
Select the correct option from the given alternatives:
The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________
Answer the following:
Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it
Answer the following:
Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle
Answer the following:
Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Answer the following:
The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
`x^2/144 - y^2/25` = 1
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
x2 − y2 = 16
The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.
If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.
Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?
The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.
The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.
The equation of the line touching both the parabolas y2 = x and x2 = y is ______.
If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.