मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle

बेरीज

उत्तर

Given equation of the parabola is y2 = 24x

Comparing this equation with y2 = 4ax, we get

4a = 24

∴ a = `24/4` = 6

Equation of tangent to the parabola y2 = 4ax having slope m is y = `"m"x + "a"/"m"`.

∴ y = `"m"x + 6/"m"`

But, (– 6, 9) lies on the tangent

∴ 9 = `-6"m" + 6/"m"`

∴ 9m = – 6m2 + 6

∴ 6m2 + 9m – 6 = 0

The roots m1 and m2 of this quadratic equation are the slopes of the tangents.

∴ m1m2 = `(-6)/6` = – 1

∴ Tangents drawn to the parabola y2 = 24x from the point (– 6, 9) are at right angle.

Alternate method:

Comparing the given equation with y2 = 4ax, we get

4a = 24

∴ a = 6

Equation of the directrix is x = – 6.

The given point lies on the directrix.

Since tangents are drawn from a point on the directrix are perpendicular,

Tangents drawn to the parabola y2 = 24x from the point (– 6, 9) are at the right angle.

shaalaa.com
Conic Sections - Parabola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Miscellaneous Exercise 7 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Conic Sections
Miscellaneous Exercise 7 | Q 2.07 | पृष्ठ १७७

संबंधित प्रश्‍न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

5y2 = 24x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

x2 = –8y


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3y2 = –16x


Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).


For the parabola 3y2 = 16x, find the parameter of the point (3, – 4).


Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa


Find coordinates of the point on the parabola. Also, find focal distance.

y2 = 12x whose parameter is `1/3`


For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3


The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.


Select the correct option from the given alternatives:

If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

2y2 = 17x


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is −3


Answer the following:

Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.


Answer the following:

The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.


The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.


Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.


If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?


The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.


Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.


Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.


A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.


Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.


Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×