हिंदी

Answer the following: Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle

योग

उत्तर

Given equation of the parabola is y2 = 24x

Comparing this equation with y2 = 4ax, we get

4a = 24

∴ a = `24/4` = 6

Equation of tangent to the parabola y2 = 4ax having slope m is y = `"m"x + "a"/"m"`.

∴ y = `"m"x + 6/"m"`

But, (– 6, 9) lies on the tangent

∴ 9 = `-6"m" + 6/"m"`

∴ 9m = – 6m2 + 6

∴ 6m2 + 9m – 6 = 0

The roots m1 and m2 of this quadratic equation are the slopes of the tangents.

∴ m1m2 = `(-6)/6` = – 1

∴ Tangents drawn to the parabola y2 = 24x from the point (– 6, 9) are at right angle.

Alternate method:

Comparing the given equation with y2 = 4ax, we get

4a = 24

∴ a = 6

Equation of the directrix is x = – 6.

The given point lies on the directrix.

Since tangents are drawn from a point on the directrix are perpendicular,

Tangents drawn to the parabola y2 = 24x from the point (– 6, 9) are at the right angle.

shaalaa.com
Conic Sections - Parabola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Miscellaneous Exercise 7 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Miscellaneous Exercise 7 | Q 2.07 | पृष्ठ १७७

संबंधित प्रश्न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3y2 = –16x


Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)


For the parabola 3y2 = 16x, find the parameter of the point (3, – 4).


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.


Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3


Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3


A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.

Show that the circle touches the directrix of the parabola.


Select the correct option from the given alternatives:

The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______


Select the correct option from the given alternatives:

If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is


Select the correct option from the given alternatives:

The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

5x2 = 24y


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is −3


Answer the following:

Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it


Answer the following:

A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


The equation of the directrix of the parabola 3x2 = 16y is ________.


If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.


If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.


A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.


If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.


The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×