हिंदी

Answer the following: The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.

योग

उत्तर

Let P(x1, y1) be any point on the parabola y2 = 4ax

Equation of tangent to the parabola y2 = 4ax having slope m is y = `"m"x + "a"/"m"`

This tangent passes through P(x1, y1)

∴ y1 = `"m"x_1 + "a"/"m"`

∴ my1 = m2x1 + a

∴ m2x1 – my1 + a = 0

This is a quadratic equation in ‘m’.

The roots m1 and m2 of this quadratic equation are the slopes of the tangents drawn from P.

∴ m1 + m2 = `y_1/x_1`, m1·m2 = `"a"/x_1`

(m1 – m2)2 = (m1 + m2)2 – 4m1m2

= `(y_1/x_1)^2 - (4"a")/x_1`

= `(y_1^2 - 4"a"x_1)/x_1^2`

∴ m1 – m2 = `sqrt((y_1^2 - 4"a"x_1)/x_1^2)`

Since (x1, y1) and a are constants, m1 − m2 is a constant.

∴ m1 – m2 = k, where k is constant.

shaalaa.com
Conic Sections - Parabola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Miscellaneous Exercise 7 [पृष्ठ १७८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Miscellaneous Exercise 7 | Q II. (11) (i) | पृष्ठ १७८

संबंधित प्रश्न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

x2 = –8y


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3y2 = –16x


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)


Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa


Find coordinates of the point on the parabola. Also, find focal distance.

2y2 = 7x whose parameter is –2


Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.


Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3


Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)


Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)


If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k


Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y


The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.


A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.

Show that the circle touches the directrix of the parabola.


Select the correct option from the given alternatives:

The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______


Select the correct option from the given alternatives:

The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______


Select the correct option from the given alternatives:

The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

2y2 = 17x


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2


Answer the following:

Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it


Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle


Answer the following:

A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).


The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.


The equation of the directrix of the parabola 3x2 = 16y is ________.


The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.


Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.


If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×