हिंदी

Find the equation of tangent to the parabola y2 = 36x from the point (2, 9) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)

योग

उत्तर

Given the equation of the parabola is y2 = 36x.

Comparing this equation with y2 = 4ax, we get

4a = 36

∴ a = 9

Equation of tangent to the parabola y2 = 4ax having slope m is y = `"mx" + "a"/"m"`

Since the tangent passes through the point (2, 9),

9 = `2"m" + 9/"m"`    

∴ 9m = 2m2 + 9

∴ 2m2 – 9m + 9 = 0

∴ 2m2 – 6m – 3m + 9 = 0

∴ 2m(m – 3) – 3(m – 3) = 0

∴ (m – 3)(2m – 3) = 0

∴ m = 3 or m = `3/2`

These are the slopes of the required tangents.

By slope point form, y – y1 = m(x – x1), the equations of the tangents are

y – 9 = 3(x – 2) and y – 9 = `3/2("x" - 2)`

∴ y – 9 = 3x – 6 and 2y – 18 = 3x – 6

∴ 3x – y + 3 = 0 and 3x – 2y + 12 = 0

shaalaa.com
Conic Sections - Parabola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.1 [पृष्ठ १४९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.1 | Q 14. (ii) | पृष्ठ १४९

संबंधित प्रश्न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

x2 = –8y


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3y2 = –16x


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)


For the parabola 3y2 = 16x, find the parameter of the point (3, – 4).


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa


Find coordinates of the point on the parabola. Also, find focal distance.

y2 = 12x whose parameter is `1/3`


For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17


If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k


Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).


The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.


Select the correct option from the given alternatives:

The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________


Select the correct option from the given alternatives:

The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

5x2 = 24y


Answer the following:

Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

x2 − y2 = 16


The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.


The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.


The equation of the directrix of the parabola 3x2 = 16y is ________.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.


Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.


The equation of the line touching both the parabolas y2 = x and x2 = y is ______.


Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×