हिंदी

Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)

योग

उत्तर

Vertex of the parabola is at origin (0, 0) and its axis is along X-axis.

∴ Equation of the parabola can be either y2 = 4ax or y2 = –4ax.

Since the parabola passes through (2, 3), it lies in 1st quadrant.

∴ Required parabola is y2 = 4ax

Substituting x = 2 and y = 3 in y2 = 4ax, we get

(3)2 = 4a(2)

∴ 9 = 8a

∴ a = `9/8` 

∴ The required equation of the parabola is

y2 = `4(9/8)`x, i.e., y2 = `9/2`x, i.e., 2y2 = 9x.

shaalaa.com
Conic Sections - Parabola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.1 [पृष्ठ १४९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.1 | Q 5. (ii) | पृष्ठ १४९

संबंधित प्रश्न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

5y2 = 24x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

x2 = –8y


Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)


Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa


Find coordinates of the point on the parabola. Also, find focal distance.

y2 = 12x whose parameter is `1/3`


For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17


Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3


Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).


A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.

Show that the circle touches the directrix of the parabola.


Select the correct option from the given alternatives:

The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______


Select the correct option from the given alternatives:

If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is


Select the correct option from the given alternatives:

The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

5x2 = 24y


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2


Answer the following:

Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).


Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact


Answer the following:

A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

16x2 + 25y2 = 400


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

x2 − y2 = 16


The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.


If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.


If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.


The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


The equation of the line touching both the parabolas y2 = x and x2 = y is ______.


The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×