Advertisements
Advertisements
प्रश्न
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
16x2 + 25y2 = 400
उत्तर
Given equation of the ellipse is 16x2 + 25y2 = 400
∴ `x^2/25 + y^2/16` = 1
Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get
a2 = 25 and b2 = 16
∴ a = 5 and b = 4
Since a > b,
X-axis is the major axis and Y-axis is the minor axis
i. Length of major axis = 2a = 2(5) = 10
Length of minor axis = 2b = 2(4) = 8
∴ Lengths of the principal axes are 10 and 8.
ii. b2 = a2(1 – e2)
∴ 16 = 25(1 – e2)
∴ `16/25` = 1 – e2
∴ e2 = `1 - 16/25`
∴ e2 = `9/25`
∴ e2 = `3/5` ...[∵ 0 < e < 1]
Co-ordinates of the foci are S(ae, 0) and S'(– ae, 0),
i.e., `"S"(5(3/5),0)` and `"S'"(-5(3/5),0)`,
i.e., S(3, 0) and S'(–3, 0)
iii. Equations of the directrices are x = `± "a"/"e"`
i.e., x = `± 5/((3/5))`, i.e., x = `± 25/3`
iv. Length of latus rectum = `(2"b"^2)/"a"`
= `(2(16))/5`
= `32/5`
v. Distance between foci = 2ae = `2(5)(3/5)` = 6
vi. Distance between directrices = `(2"a")/"e"`
= `(2(5))/((3/5))`
= `50/3`
APPEARS IN
संबंधित प्रश्न
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
5y2 = 24x
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
x2 = –8y
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3y2 = –16x
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)
For the parabola 3y2 = 16x, find the parameter of the point (27, –12).
Find coordinates of the point on the parabola. Also, find focal distance.
2y2 = 7x whose parameter is –2
Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)
Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).
Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3
Select the correct option from the given alternatives:
The endpoints of latus rectum of the parabola y2 = 24x are _______
Select the correct option from the given alternatives:
Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________
Select the correct option from the given alternatives:
The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
2y2 = 17x
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
5x2 = 24y
Answer the following:
Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2
Answer the following:
Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is −3
Answer the following:
Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10
Answer the following:
A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.
The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.
Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.
If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.
If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.
The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.
The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.
If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.
The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.
Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.
The equation of the line touching both the parabolas y2 = x and x2 = y is ______.
Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.
Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.
The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.