मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.

बेरीज

उत्तर

Let P(x1, y1) be any point on the parabola y2 = 4ax

Equation of tangent to the parabola y2 = 4ax having slope m is y = `"m"x + "a"/"m"`

This tangent passes through P(x1, y1)

∴ y1 = `"m"x_1 + "a"/"m"`

∴ my1 = m2x1 + a

∴ m2x1 – my1 + a = 0

This is a quadratic equation in ‘m’.

The roots m1 and m2 of this quadratic equation are the slopes of the tangents drawn from P.

∴ m1 + m2 = `y_1/x_1`, m1·m2 = `"a"/x_1`

(m1 – m2)2 = (m1 + m2)2 – 4m1m2

= `(y_1/x_1)^2 - (4"a")/x_1`

= `(y_1^2 - 4"a"x_1)/x_1^2`

∴ m1 – m2 = `sqrt((y_1^2 - 4"a"x_1)/x_1^2)`

Since (x1, y1) and a are constants, m1 − m2 is a constant.

∴ m1 – m2 = k, where k is constant.

shaalaa.com
Conic Sections - Parabola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Miscellaneous Exercise 7 [पृष्ठ १७८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Conic Sections
Miscellaneous Exercise 7 | Q II. (11) (i) | पृष्ठ १७८

संबंधित प्रश्‍न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

5y2 = 24x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3x2 = 8y


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

x2 = –8y


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)


Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)


Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa


For the parabola y2 = 4x, find the coordinate of the point whose focal distance is 17


If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k


A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.

Show that the circle touches the directrix of the parabola.


Select the correct option from the given alternatives:

The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________


Select the correct option from the given alternatives:

If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is


Select the correct option from the given alternatives:

The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______


Select the correct option from the given alternatives:

The endpoints of latus rectum of the parabola y2 = 24x are _______


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Answer the following:

Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.


The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.


The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.


Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.


A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.


Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.


Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×