Advertisements
Advertisements
प्रश्न
Select the correct option from the given alternatives:
Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________
पर्याय
y2 = 8x
y2 = 32x
y2 = 16x
x2 = 32y
उत्तर
y2 = 32x
Explanation:
Since directrix is parallel to Y-axis,
X-axis is the axis of the parabola.
Let the equation of parabola be y2 = 4ax.
Equation of directrix is x + 8 = 0
∴ a = 8
∴ required equation of parabola is y2 = 32x
APPEARS IN
संबंधित प्रश्न
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
5y2 = 24x
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
y2 = –20x
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3y2 = –16x
Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).
Find coordinates of the point on the parabola. Also, find focal distance.
2y2 = 7x whose parameter is –2
Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.
Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3
Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y
Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3
The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.
A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.
Show that the circle touches the directrix of the parabola.
Select the correct option from the given alternatives:
If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is
Select the correct option from the given alternatives:
The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______
Select the correct option from the given alternatives:
The endpoints of latus rectum of the parabola y2 = 24x are _______
Select the correct option from the given alternatives:
The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________
Select the correct option from the given alternatives:
The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
2y2 = 17x
Answer the following:
Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2
Answer the following:
Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle
Answer the following:
Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact
Answer the following:
A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.
Answer the following:
The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.
If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.
If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.
The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.
The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.
If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.
The equation of the line touching both the parabolas y2 = x and x2 = y is ______.
A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.