Advertisements
Advertisements
Question
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Solution
Let P(x1, y1) be any point on the parabola y2 = 4ax
Equation of tangent to the parabola y2 = 4ax having slope m is y = `"m"x + "a"/"m"`
This tangent passes through P(x1, y1)
∴ y1 = `"m"x_1 + "a"/"m"`
∴ my1 = m2x1 + a
∴ m2x1 – my1 + a = 0
This is a quadratic equation in ‘m’.
The roots m1 and m2 of this quadratic equation are the slopes of the tangents drawn from P.
∴ m1 + m2 = `y_1/x_1`, m1·m2 = `"a"/x_1`
(m1 – m2)2 = (m1 + m2)2 – 4m1m2
= `(y_1/x_1)^2 - (4"a")/x_1`
= `(y_1^2 - 4"a"x_1)/x_1^2`
∴ m1 – m2 = `sqrt((y_1^2 - 4"a"x_1)/x_1^2)`
Since (x1, y1) and a are constants, m1 − m2 is a constant.
∴ m1 – m2 = k, where k is constant.
APPEARS IN
RELATED QUESTIONS
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3y2 = –16x
Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).
Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).
For the parabola 3y2 = 16x, find the parameter of the point (27, –12).
Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.
Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3
Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)
If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k
Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y
A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.
Show that the circle touches the directrix of the parabola.
Select the correct option from the given alternatives:
The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______
Select the correct option from the given alternatives:
The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________
Select the correct option from the given alternatives:
The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______
Select the correct option from the given alternatives:
Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________
Select the correct option from the given alternatives:
The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________
Select the correct option from the given alternatives:
If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
2y2 = 17x
Answer the following:
Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it
Answer the following:
Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it
Answer the following:
A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.
Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.
If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.
If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.
If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.
The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.
If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.
A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.
If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.