English

Answer the following: The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant. - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.

Sum

Solution

Let P(x1, y1) be any point on the parabola y2 = 4ax

Equation of tangent to the parabola y2 = 4ax having slope m is y = `"m"x + "a"/"m"`

This tangent passes through P(x1, y1)

∴ y1 = `"m"x_1 + "a"/"m"`

∴ my1 = m2x1 + a

∴ m2x1 – my1 + a = 0

This is a quadratic equation in ‘m’.

The roots m1 and m2 of this quadratic equation are the slopes of the tangents drawn from P.

∴ m1 + m2 = `y_1/x_1`, m1·m2 = `"a"/x_1`

(m1 – m2)2 = (m1 + m2)2 – 4m1m2

= `(y_1/x_1)^2 - (4"a")/x_1`

= `(y_1^2 - 4"a"x_1)/x_1^2`

∴ m1 – m2 = `sqrt((y_1^2 - 4"a"x_1)/x_1^2)`

Since (x1, y1) and a are constants, m1 − m2 is a constant.

∴ m1 – m2 = k, where k is constant.

shaalaa.com
Conic Sections - Parabola
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Miscellaneous Exercise 7 [Page 178]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 7 Conic Sections
Miscellaneous Exercise 7 | Q II. (11) (i) | Page 178

RELATED QUESTIONS

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3y2 = –16x


Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).


Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.


Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3


Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)


If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k


Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y


A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.

Show that the circle touches the directrix of the parabola.


Select the correct option from the given alternatives:

The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______


Select the correct option from the given alternatives:

The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________


Select the correct option from the given alternatives:

The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Select the correct option from the given alternatives:

The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

2y2 = 17x


Answer the following:

Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it


Answer the following:

A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.


Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.


The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.


Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.


If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.


If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×