English

Select the correct option from the given alternatives: The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________ - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct option from the given alternatives:

The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________

Options

  • 4

  • 6

  • 8

  • 10

MCQ

Solution

8

Explanation:

Hint: The given equation can be written as:

x2 – 4x + 4 = 8y – 12 + 4

∴ (x – 2)2 = 8(y – 1)

This is of the form X2 = 4bY, where 4b = 8

∴ l(L.R.) = 4b = 8

shaalaa.com
Conic Sections - Parabola
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Miscellaneous Exercise 7 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 7 Conic Sections
Miscellaneous Exercise 7 | Q I. (2) | Page 176

RELATED QUESTIONS

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)


Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa


Find coordinates of the point on the parabola. Also, find focal distance.

y2 = 12x whose parameter is `1/3`


Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)


Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)


If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k


Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).


Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y


Select the correct option from the given alternatives:

The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______


Select the correct option from the given alternatives:

If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is


Select the correct option from the given alternatives:

The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

5x2 = 24y


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is −3


Answer the following:

Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).


Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle


Answer the following:

A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

16x2 + 25y2 = 400


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


The equation of the directrix of the parabola 3x2 = 16y is ________.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.


Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.


The equation of the line touching both the parabolas y2 = x and x2 = y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×