Advertisements
Advertisements
Question
Select the correct option from the given alternatives:
The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________
Options
4
6
8
10
Solution
8
Explanation:
Hint: The given equation can be written as:
x2 – 4x + 4 = 8y – 12 + 4
∴ (x – 2)2 = 8(y – 1)
This is of the form X2 = 4bY, where 4b = 8
∴ l(L.R.) = 4b = 8
APPEARS IN
RELATED QUESTIONS
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
y2 = –20x
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)
Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).
For the parabola 3y2 = 16x, find the parameter of the point (27, –12).
Find the focal distance of a point on the parabola y2 = 16x whose ordinate is 2 times the abscissa
Find coordinates of the point on the parabola. Also, find focal distance.
y2 = 12x whose parameter is `1/3`
Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)
Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)
If the tangent drawn from the point (–6, 9) to the parabola y2 = kx are perpendicular to each other, find k
Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).
Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y
Select the correct option from the given alternatives:
The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______
Select the correct option from the given alternatives:
If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is
Select the correct option from the given alternatives:
The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______
Select the correct option from the given alternatives:
Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________
Select the correct option from the given alternatives:
If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
5x2 = 24y
Answer the following:
Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is −3
Answer the following:
Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).
Answer the following:
Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle
Answer the following:
A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
16x2 + 25y2 = 400
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
`x^2/144 - y^2/25` = 1
The equation of the directrix of the parabola 3x2 = 16y is ________.
Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.
If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.
The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.
Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.
The equation of the line touching both the parabolas y2 = x and x2 = y is ______.