Advertisements
Advertisements
Question
Answer the following:
A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).
Solution
Given equation of the parabola is y2 = 8x
Comparing this equation with y2 = 4ax, we get
4a = 8
∴ a = 2
Equation of tangent to given parabola with slope m is y = `"m"x + 2/"m"`
∴ m2x – my + 2 = 0 ...(i)
Equation of the circle is x2 + y2 = 2
Its centre ≡ (0, 0) and Radius = `sqrt(2)`
Line (i) touches the circle.
∴ Length of perpendicular from the centre to the line (i) = radius
∴ `|("m"^2 0 - "m" 0 + 2)/sqrt("m"^4 + "m"^2)| = sqrt(2)`
∴ `4/("m"^4 + "m"^2)` = 2
∴ m4 + m2 – 2 = 0
∴ (m2 + 2)(m2 – 1) = 0
Since m2 ≠ – 2,
m2 – 1 = 0
∴ m = ± 1
When m = 1, equation of the tangent is
y = `(1)x + 2/((1))`
∴ y = (x + 2) ...(1)
When m = –1, equation of the tangent is
y = `(-1)x + 2/((-1))`
∴ y = –x – 2
∴ y = –(x + 2) ...(2)
From (1) and (2), the equation of the common tangents to the given parabola is y = ± (x + 2).
APPEARS IN
RELATED QUESTIONS
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3x2 = 8y
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3y2 = –16x
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)
Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)
For the parabola 3y2 = 16x, find the parameter of the point (27, –12).
Find coordinates of the point on the parabola. Also, find focal distance.
y2 = 12x whose parameter is `1/3`
Find coordinates of the point on the parabola. Also, find focal distance.
2y2 = 7x whose parameter is –2
Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)
Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3
Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).
Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y
Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3
A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.
Show that the circle touches the directrix of the parabola.
Select the correct option from the given alternatives:
The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______
Select the correct option from the given alternatives:
The endpoints of latus rectum of the parabola y2 = 24x are _______
Answer the following:
Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it
Answer the following:
Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).
Answer the following:
Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle
Answer the following:
Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
16x2 + 25y2 = 400
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
x2 − y2 = 16
The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.
Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.
If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.
Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?
The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.
If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.
The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.
If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.
The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.