Advertisements
Advertisements
Question
Select the correct option from the given alternatives:
The endpoints of latus rectum of the parabola y2 = 24x are _______
Options
(6, ±12)
(12, ±6)
(6, ±6)
none of these
Solution
The endpoints of latus rectum of the parabola y2 = 24x are (6, ±12)
APPEARS IN
RELATED QUESTIONS
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
5y2 = 24x
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3y2 = –16x
Find the equation of the parabola with vertex at the origin, axis along Y-axis and passing through the point (–10, –5).
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)
Find coordinates of the point on the parabola. Also, find focal distance.
y2 = 12x whose parameter is `1/3`
Find length of latus rectum of the parabola y2 = 4ax passing through the point (2, –6)
Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)
Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)
Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3
The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.
Select the correct option from the given alternatives:
The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________
Select the correct option from the given alternatives:
The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
5x2 = 24y
Answer the following:
Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2
Answer the following:
Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10
Answer the following:
Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it
Answer the following:
Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it
Answer the following:
Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).
Answer the following:
A line touches the circle x2 + y2 = 2 and the parabola y2 = 8x. Show that its equation is y = ± (x + 2).
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.
Answer the following:
Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve
16x2 + 25y2 = 400
The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.
The equation of the directrix of the parabola 3x2 = 16y is ________.
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.
If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.
The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.
A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.
If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.
Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.
The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.