English

Answer the following: Find the (i) lengths of the principal axes (ii) co-ordinates of the foci (iii) equations of directrices (iv) length of the latus rectum (v) Distance between foci (vi) distance b - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

x2 − y2 = 16

Sum

Solution

Given equation of the hyperbola is x2 – y2 = 16

∴ `x^2/16 - y^2/16` = 1

Comparing this equation with `x^2/"a"^2 - y^2/"b"^2` = 1, we get

a2 = 16 and b2 = 16

∴ a = 4 and b = 4

i. Length of transverse axis = 2a = 2(4) = 8

Length of conjugate axis = 2b = 2(4) = 8

ii. We know that

e =`sqrt("a"^2 + "b"^2)/"a"`

= `sqrt(16 + 16)/4`

= `sqrt(32)/4`

= `(4sqrt(2))/4`

= `sqrt(2)`

Co-ordinates of foci are S(ae, 0) and S'(– ae, 0),

i.e., `"S"(4sqrt(2), 0)` and `"S""'"(-4 sqrt(2), 0)`

iii. Equations of the directrices are x = `± "a"/"e"`.

∴ x = `± 4/sqrt(2)`

∴ x = `±2sqrt(2)`

iv. Length of latus rectum = `(2"b"^2)/"a"`

= `(2(16))/4`

= 8

v. Distance between foci = 2ae = `2(4)(sqrt(2)) = 8sqrt(2)`

vi. Distance between directrices = `(2"a")/"e"`

= `(2(4))/sqrt(2)`

= `4sqrt(2)`.

shaalaa.com
Conic Sections - Parabola
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Miscellaneous Exercise 7 [Page 178]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 7 Conic Sections
Miscellaneous Exercise 7 | Q II. (13) (iv) | Page 178

RELATED QUESTIONS

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3y2 = –16x


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)


Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (1, –6)


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)


For the parabola 3y2 = 16x, find the parameter of the point (3, – 4).


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find coordinates of the point on the parabola. Also, find focal distance.

2y2 = 7x whose parameter is –2


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.


Two tangents to the parabola y2 = 8x meet the tangents at the vertex in the point P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangent is y2 = 8(x + 2).


Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y


Select the correct option from the given alternatives:

The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______


Select the correct option from the given alternatives:

The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________


Select the correct option from the given alternatives:

The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______


Select the correct option from the given alternatives:

The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

2y2 = 17x


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

5x2 = 24y


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2


Answer the following:

Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).


Answer the following:

Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that  m1 − m2 = k, where k is a constant.


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

`x^2/144 - y^2/25` = 1


The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.


Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.


The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is ______.


If the three normals drawn to the parabola, y2 = 2x pass through the point (a, 0)a ≠ 0, then' a' must be greater than ______.


If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.


If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.


The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.


Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another, where P and Q are points on the parabola. If the locus of middle point of PQ is y2 = 2(x – l), then value of l is ______.


Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.


Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.


If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.


Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×